Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out?
Ontology highlight
ABSTRACT: The symbiotic relationship between cnidarians and their dinoflagellate symbionts, Symbiodinium spp, which underpins the formation of tropical coral reefs, can be destabilized by rapid changes to environmental conditions. Although some studies have concluded that a breakdown in the symbiosis begins with increased reactive oxygen species (ROS) generation within the symbiont due to a decoupling of photosynthesis, others have reported the release of viable symbionts via a variety of host cell derived mechanisms. We explored an alternative model focused upon changes in host cnidarian mitochondrial integrity in response to thermal stress. Mitochondria are often likened to being batteries of the cell, providing energy in the form of ATP, and controlling cellular pathway activation and ROS generation. The overall morphology of host mitochondria was compared to that of associated symbionts under an experimental thermal stress using confocal and electron microscopy. The results demonstrate that hyperthermic stress induces the degradation of cnidarian host mitochondria that is independent of symbiont cellular deterioration. The potential sites of host mitochondrial disruption were also assessed by measuring changes in the expression of genes associated with electron transport and ATP synthesis using quantitative RT-PCR. The primary site of degradation appeared to be downstream of complex III of the electron transport chain with a significant reduction in host cytochrome c and ATP synthase expression. The consequences of reduced expression could limit the capacity of the host to mitigate ROS generation and maintain both organelle integrity and cellular energy supplies. The disruption of host mitochondria, cellular homeostasis, and subsequent cell death irrespective of symbiont integrity highlights the importance of the host response to thermal stress and in symbiosis dysfunction that has substantial implications for understanding how coral reefs will survive in the face of climate change.
SUBMITTER: Dunn SR
PROVIDER: S-EPMC3398039 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA