Unknown

Dataset Information

0

Transferrin coated nanoparticles: study of the bionano interface in human plasma.


ABSTRACT: It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience for understanding the impact of the nanoparticle-protein interactions on the biological response in vitro and in vivo. Here, we outline an integrated methodology to address the different aspects governing the formation and the function of the protein corona of polystyrene nanoparticles coated with Transferrin by different strategies. Protein-NP complexes are studied both in situ (in human plasma, full corona FC) and after washing (hard corona, HC) in terms of structural properties, composition and second-order interactions with protein microarrays. Human protein microarrays are used to effectively study NP-corona/proteins interactions addressing the growing demand to advance investigations of the extrinsic function of corona complexes. Our data highlight the importance of this methodology as an analysis to be used in advance of the application of engineered NPs in biological environments.

SUBMITTER: Pitek AS 

PROVIDER: S-EPMC3400652 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transferrin coated nanoparticles: study of the bionano interface in human plasma.

Pitek Andrzej S AS   O'Connell David D   Mahon Eugene E   Monopoli Marco P MP   Baldelli Bombelli Francesca F   Dawson Kenneth A KA  

PloS one 20120719 7


It is now well established that the surface of nanoparticles (NPs) in a biological environment is immediately modified by the adsorption of biomolecules with the formation of a protein corona and it is also accepted that the protein corona, rather than the original nanoparticle surface, defines a new biological identity. Consequently, a methodology to effectively study the interaction between nanomaterials and the biological corona encountered within an organism is a key objective in nanoscience  ...[more]

Similar Datasets

| S-EPMC1163000 | biostudies-other
| S-EPMC7894301 | biostudies-literature
| S-EPMC7217893 | biostudies-literature
| S-EPMC9315955 | biostudies-literature
| S-EPMC3617810 | biostudies-literature
2021-08-18 | GSE154250 | GEO
| S-EPMC3666717 | biostudies-literature
2019-01-01 | GSE124126 | GEO
| S-EPMC6247929 | biostudies-literature
| S-EPMC6315732 | biostudies-literature