Persistent signaling by thyrotropin-releasing hormone receptors correlates with G-protein and receptor levels.
Ontology highlight
ABSTRACT: G-protein-coupled receptors with dissociable agonists for thyrotropin, parathyroid hormone, and sphingosine-1-phosphate were found to signal persistently hours after agonist withdrawal. Here we show that mouse thyrotropin-releasing hormone (TRH) receptors, subtypes 2 and 1(TRH-R2 and TRH-R1), can signal persistently in HEK-EM293 cells under appropriate conditions, but TRH-R2 exhibits higher persistent signaling activity. Both receptors couple primarily to G?(q/11). To gain insight into the mechanism of persistent signaling, we compared proximal steps of inositolmonophosphate (IP1) signaling by TRH-Rs. Persistent signaling was not caused by slower dissociation of TRH from TRH-R2 (t(1/2)=77 ± 8.1 min) compared with TRH-R1 (t(1/2)=82 ± 12 min) and was independent of internalization, as inhibition of internalization did not affect persistent signaling (115% of control), but required continuously activated receptors, as an inverse agonist decreased persistent signaling by 60%. G?(q/11) knockdown decreased persistent signaling by TRH-R2 by 82%, and overexpression of G?(q/11) induced persistent signaling in cells expressing TRH-R1. Lastly, persistent signaling was induced in cells expressing high levels of TRH-R1. We suggest that persistent signaling by TRHRs is exhibited when sufficient levels of agonist/receptor/G-protein complexes are established and maintained and that TRH-R2 forms and maintains these complexes more efficiently than TRH-R1.
SUBMITTER: Boutin A
PROVIDER: S-EPMC3405277 | biostudies-literature | 2012 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA