Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity.
Ontology highlight
ABSTRACT: Cancer stem cells (CSCs) represent a population of cancer cells that possess unique self-renewal and differentiation characteristics required for tumorigenesis and are resistant to chemotherapy-induced apoptosis. Lung CSCs can be enriched by several markers including drug-resistant side population (SP), CD133(pos) and ALDH(high). Using human non-small cell lung adenocarcinoma cell lines and patient-derived primary tumor cells, we demonstrate that SP cells represent a subpopulation distinct from other cancer stem/progenitor cell (CS/PC) populations marked by CD133(pos) or ALDH(high). The non-CS/PCs and CS/PCs of each subpopulation are interconvertible. Epithelial-mesenchymal transition (EMT) promotes the formation of CD133(pos) and ALDH(high) CS/PC subpopulations while suppressing the SP CS/PC subpopulation. Rac1 GTPase activity is significantly increased in cells that have undergone EMT, and targeting Rac1 is effective in inhibiting the dynamic conversion of non-CS/PCs to CS/PCs, as well as the CS/PC activity. These results imply that various subpopulations of CS/PCs and non-CS/PCs may achieve a stochastic equilibrium in a defined microenvironment, and eliminating multiple subpopulations of CS/PCs and effectively blocking non-CS/PC to CS/PC transition, by an approach such as targeting Rac1, can be a more effective therapy.
SUBMITTER: Akunuru S
PROVIDER: S-EPMC3406592 | biostudies-literature | 2012 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA