Unknown

Dataset Information

0

Computational inference of mRNA stability from histone modification and transcriptome profiles.


ABSTRACT: Histone modifications play important roles in regulating eukaryotic gene expression and have been used to model expression levels. Here, we present a regression model to systematically infer mRNA stability by comparing transcriptome profiles with ChIP-seq of H3K4me3, H3K27me3 and H3K36me3. The results from multiple human and mouse cell lines show that the inferred unstable mRNAs have significantly longer 3'Untranslated Regions (UTRs) and more microRNA binding sites within 3'UTR than the inferred stable mRNAs. Regression residuals derived from RNA-seq, but not from GRO-seq, are highly correlated with the half-lives measured by pulse-labeling experiments, supporting the rationale of our inference. Whereas, the functions enriched in the inferred stable and unstable mRNAs are consistent with those from pulse-labeling experiments, we found the unstable mRNAs have higher cell-type specificity under functional constraint. We conclude that the systematical use of histone modifications can differentiate non-expressed mRNAs from unstable mRNAs, and distinguish stable mRNAs from highly expressed ones. In summary, we represent the first computational model of mRNA stability inference that compares transcriptome and epigenome profiles, and provides an alternative strategy for directing experimental measurements.

SUBMITTER: Wang C 

PROVIDER: S-EPMC3413115 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Computational inference of mRNA stability from histone modification and transcriptome profiles.

Wang Chengyang C   Tian Rui R   Zhao Qian Q   Xu Han H   Meyer Clifford A CA   Li Cheng C   Zhang Yong Y   Liu X Shirley XS  

Nucleic acids research 20120410 14


Histone modifications play important roles in regulating eukaryotic gene expression and have been used to model expression levels. Here, we present a regression model to systematically infer mRNA stability by comparing transcriptome profiles with ChIP-seq of H3K4me3, H3K27me3 and H3K36me3. The results from multiple human and mouse cell lines show that the inferred unstable mRNAs have significantly longer 3'Untranslated Regions (UTRs) and more microRNA binding sites within 3'UTR than the inferred  ...[more]

Similar Datasets

| S-EPMC9858580 | biostudies-literature
| S-EPMC10441234 | biostudies-literature
| S-EPMC3098488 | biostudies-literature
| S-EPMC6762093 | biostudies-literature
| S-EPMC10280832 | biostudies-literature
| S-EPMC5900561 | biostudies-literature
| S-EPMC9352860 | biostudies-literature
| S-EPMC6330433 | biostudies-literature
| S-EPMC3142184 | biostudies-literature
| S-EPMC6744882 | biostudies-literature