Unknown

Dataset Information

0

Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae.


ABSTRACT:

Purpose

The posterior sclera has a major biomechanical influence on the optic nerve head, and may therefore be important in glaucoma. Scleral material properties are influenced significantly by collagen fiber architecture. Here we quantitatively map fiber orientation in non-glaucoma and glaucoma posterior human sclerae.

Methods

Wide-angle x-ray scattering quantified fiber orientation at 0.5-mm intervals across seven non-glaucoma post-mortem human sclerae, and five sclerae with glaucoma history and confirmed axon loss. Multiphoton microscopy provided semiquantitative depth-profiling in the peripapillary sclera.

Results

Midposterior fiber orientation was either uniaxial (one preferred direction) or biaxial (two directions). The peripapillary sclera was characterized by a ring of fibers located mainly in the mid-/outer stromal depth and encompassing ?50% of the total tissue thickness. Fiber anisotropy was 37% higher in the peripapillary sclera compared with midposterior, varied up to 4-fold with position around the scleral canal, and was consistently lowest in the superior-nasal quadrant. Mean fiber anisotropy was significantly lower in the superior-temporal (P < 0.01) and inferior-nasal (P < 0.05) peripapillary scleral quadrants in glaucoma compared with non-glaucoma eyes.

Conclusions

The collagen fiber architecture of the posterior human sclera is highly anisotropic and inhomogeneous. Regional differences in peripapillary fiber anisotropy between non-glaucoma and glaucoma eyes may represent adaptive changes in response to elevated IOP and/or glaucoma, or baseline structural properties that associate with predisposition to glaucomatous axon damage. Quantitative fiber orientation data will benefit numerical eye models aimed at predicting the sclera's influence on nerve head biomechanics, and thereby its possible role in glaucoma.

SUBMITTER: Pijanka JK 

PROVIDER: S-EPMC3416032 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae.

Pijanka Jacek K JK   Coudrillier Baptiste B   Ziegler Kimberly K   Sorensen Thomas T   Meek Keith M KM   Nguyen Thao D TD   Quigley Harry A HA   Boote Craig C  

Investigative ophthalmology & visual science 20120807 9


<h4>Purpose</h4>The posterior sclera has a major biomechanical influence on the optic nerve head, and may therefore be important in glaucoma. Scleral material properties are influenced significantly by collagen fiber architecture. Here we quantitatively map fiber orientation in non-glaucoma and glaucoma posterior human sclerae.<h4>Methods</h4>Wide-angle x-ray scattering quantified fiber orientation at 0.5-mm intervals across seven non-glaucoma post-mortem human sclerae, and five sclerae with gla  ...[more]

Similar Datasets

| S-EPMC7610734 | biostudies-literature
| S-EPMC3119254 | biostudies-literature
| S-EPMC5127549 | biostudies-other
| S-EPMC2980743 | biostudies-literature
| S-EPMC8645375 | biostudies-literature
| S-EPMC3655185 | biostudies-literature
| S-EPMC3933569 | biostudies-literature
| S-EPMC6895231 | biostudies-literature
| S-EPMC3987166 | biostudies-other
| S-EPMC8346522 | biostudies-literature