Unknown

Dataset Information

0

Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle.


ABSTRACT: In cardiac muscle, Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) is mediated by ryanodine receptor (RyR) Ca(2+) release channels. The inherent positive feedback of CICR is normally well-controlled. Understanding this control mechanism is a priority because its malfunction has life-threatening consequences.We show that CICR local control is governed by SR Ca(2+) load, largely because load determines the single RyR current amplitude that drives inter-RyR CICR.We differentially manipulated single RyR Ca(2+) flux amplitude and SR Ca(2+) load in permeabilized ventricular myocytes as an endogenous cell biology model of the heart. Large RyR-permeable organic cations were used to interfere with Ca(2+) conductance through the open RyR pore. Single-channel studies show this attenuates current amplitude without altering other aspects of RyR function. In cells, the same experimental maneuver increased resting SR Ca(2+) load. Despite the increased load, Ca(2+) spark (inter-RyR CICR events) frequency decreased and sparks terminated earlier.Spark local control follows single RyR current amplitude, not simply SR Ca(2+) load. Spark frequency increases with load because spontaneous RyR openings at high loads produce larger currents (ie, a larger CICR trigger signal). Sparks terminate when load falls to the point at which single RyR current amplitude is no longer sufficient to sustain inter-RyR CICR. Thus, RyRs that spontaneously close no longer reopen and local Ca(2+) release ends.

SUBMITTER: Guo T 

PROVIDER: S-EPMC3417769 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle.

Guo Tao T   Gillespie Dirk D   Fill Michael M  

Circulation research 20120524 1


<h4>Rationale</h4>In cardiac muscle, Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) is mediated by ryanodine receptor (RyR) Ca(2+) release channels. The inherent positive feedback of CICR is normally well-controlled. Understanding this control mechanism is a priority because its malfunction has life-threatening consequences.<h4>Objective</h4>We show that CICR local control is governed by SR Ca(2+) load, largely because load determines the single RyR current amplitude t  ...[more]

Similar Datasets

| S-EPMC3409101 | biostudies-literature
| S-EPMC4269524 | biostudies-literature
| S-EPMC4651794 | biostudies-literature
| S-EPMC7898951 | biostudies-literature
| S-EPMC1829292 | biostudies-literature
| S-EPMC6302159 | biostudies-literature
| S-EPMC3674825 | biostudies-literature
| S-EPMC8794839 | biostudies-literature
| S-EPMC4277184 | biostudies-literature
| S-EPMC4216943 | biostudies-literature