Project description:A cyclic peptide composed of five tryptophan, four arginine, and one cysteine [W5R4C] was synthesized. The peptide was evaluated for generating cyclic peptide-capped selenium nanoparticles (CP-SeNPs) in situ. A physical mixing of the cyclic peptide with SeO3(-2) solution in water generated [W5R4C]-SeNPs via the combination of reducing and capping properties of amino acids in the peptide structure. Transmission electron microscopy (TEM) images showed that [W5R4C]-SeNPs were in the size range of 110-150 nm. Flow cytometry data revealed that a fluorescence-labeled phosphopeptide (F'-PEpYLGLD, where F' = fluorescein) and an anticancer drug (F'-dasatinib) exhibited approximately 25- and 9-times higher cellular uptake in the presence of [W5R4C]-SeNPs than those of F'-PEpYLGLD and dasatinib alone in human leukemia (CCRF-CEM) cells after 2 h of incubation, respectively. Confocal microscopy also exhibited higher cellular delivery of F'-PEpYLGLD and F'-dasatinib in the presence of [W5R4C]-SeNPs compared to the parent fluorescence-labeled drug alone in human ovarian adenocarcinoma (SK-OV-3) cells after 2 h of incubation at 37 °C. The antiproliferative activities of several anticancer drugs doxorubicin, gemcitabine, clofarabine, etoposide, camptothecin, irinotecan, epirubicin, fludarabine, dasatinib, and paclitaxel were improved in the presence of [W5R4C]-SeNPs (50 ?M) by 38%, 49%, 36%, 36%, 31%, 30%, 30%, 28%, 24%, and 17%, respectively, after 48 h incubation in SK-OV-3 cells. The results indicate that CP-SeNPs can be potentially used as nanosized delivery tools for negatively charged biomolecules and anticancer drugs.
Project description:Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.
Project description:Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.
Project description:Bacteria possess numerous peptide transporters for importing peptides as nutrients. However, these peptide transporters are now consistently reported to play a role in the virulence of various bacterial pathogens. Their ability to transport peptides has implications in antibacterial therapy as well. Therefore, it would be instrumental to have complete knowledge about the role of peptide transporters in mediating this cross connection between metabolism and pathogenesis. Studies on various peptide transporters in bacterial pathogens have improved our understanding of this field. In this review, we have given an overview of the functioning of bacterial peptide transporters and their contribution in virulence of major bacterial pathogens.
Project description:The Arabidopsis di- and tripeptide transporters AtPTR1 and AtPTR5 were expressed in Xenopus laevis oocytes, and their selectivity and kinetic properties were determined by voltage clamping and by radioactive uptake. Dipeptide transport by AtPTR1 and AtPTR5 was found to be electrogenic and dependent on protons but not sodium. In the absence of dipeptides, both transporters showed proton-dependent leak currents that were inhibited by Phe-Ala (AtPTR5) and Phe-Ala, Trp-Ala, and Phe-Phe (AtPTR1). Phe-Ala was shown to reduce leak currents by binding to the substrate-binding site with a high apparent affinity. Inhibition of leak currents was only observed when the aromatic amino acids were present at the N-terminal position. AtPTR1 and AtPTR5 transport activity was voltage-dependent, and currents increased supralinearly with more negative membrane potentials and did not saturate. The voltage dependence of the apparent affinities differed between Ala-Ala, Ala-Lys, and Ala-Asp and was not conserved between the two transporters. The apparent affinity of AtPTR1 for these dipeptides was pH-dependent and decreased with decreasing proton concentration. In contrast to most proton-coupled transporters characterized so far, -I(max) increased at high pH, indicating that regulation of the transporter by pH overrides the importance of protons as co-substrate.
Project description:POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.
Project description:Peptide amphiphiles (PAs) are promising tools for the intracellular delivery of numerous drugs. PAs are known to be biodegradable systems. Here, four PA derivatives containing arginine and lysine conjugated with fatty acyl groups with different chain lengths, namely, PA1: R-K(C14)-R, PA2: R-K(C16)-R, PA3: K(C14)-R-K(C14), and PA4: K(C16)-R-K(C16), where C16 = palmitic acid and C14 = myristic acid, were synthesized through Fmoc chemistry. Flow cytometry studies showed that, among all synthesized PAs, only K(C16)-R-K(C16), PA4 was able to enhance the cellular uptake of a fluorescence-labeled anti-HIV drug 2',3'-dideoxy-3'-thiacythidine (F'-3TC, F' = fluorescein) and a biologically important phosphopeptide (F'-PEpYLGLD) in human leukemia cells (CCRF-CEM) after 2 h incubation. For example, the cellular uptake of F'-3TC and F'-PEpYLGLD was enhanced approximately 7.1- and 12.6-fold in the presence of the PA4 compared to those of the drugs alone. Confocal microscopy of F'-3TC and F'-PEpYLGLD loaded PA4 in live cells showed significantly higher intracellular localization than the drug alone in human ovarian cells (SK-OV-3) after 2 h incubation. The high-performance liquid chromatography (HPLC) results showed that loading of Dox by the peptide amphiphile was 56% after 24 h. The loaded Dox was released (34%) within 48 h intracellularly. The circular dichrosim (CD) results exhibited that the secondary structure of the peptide was changed upon interactions with Dox. Mechanistic studies revealed that endocytosis is the major pathway of the internalization. These studies suggest that PAs containing the appropriate sequence of amino acids, chain length, charge, and hydrophobicity can be used as cellular delivery tools for transporting drugs and biomolecules.
Project description:BackgroundNitrogen uptake, reallocation within the plant, and between subcellular compartments involves ammonium, nitrate and peptide transporters. Ammonium transporters are separated into two distinct families (AMT1 and AMT2), each comprised of five members on average in angiosperms. Nitrate transporters also form two discrete families (NRT1 and NRT2), with angiosperms having four NRT2s, on average. NRT1s share an evolutionary history with peptide transporters (PTRs). The NRT1/PTR family in land plants usually has more than 50 members and contains also members with distinct activities, such as glucosinolate and abscisic acid transport.ResultsPhylogenetic reconstructions of each family across 20 land plant species with available genome sequences were supplemented with subcellular localization and transmembrane topology predictions. This revealed that both AMT families diverged prior to the separation of bryophytes and vascular plants forming two distinct clans, designated as supergroups, each. Ten supergroups were identified for the NRT1/PTR family. It is apparent that nitrate and peptide transport within the NRT1/PTR family is polyphyletic, that is, nitrate and/or peptide transport likely evolved multiple times within land plants. The NRT2 family separated into two distinct clans early in vascular plant evolution. Subsequent duplications occurring prior to the eudicot/monocot separation led to the existence of two AMT1, six AMT2, 31 NRT1/PTR, and two NRT2 clans, designated as groups.ConclusionPhylogenetic separation of groups suggests functional divergence within the angiosperms for each family. Distinct groups within the NRT1/PTR family appear to separate peptide and nitrate transport activities as well as other activities contained within the family, for example nitrite transport. Conversely, distinct activities, such as abscisic acid and glucosinolate transport, appear to have recently evolved from nitrate transporters.
Project description:Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply.
Project description:BackgroundPeptide transporters are membrane proteins that mediate the cellular uptake of di- and tripeptides, and of peptidomimetic drugs such as β-lactam antibiotics, antiviral drugs and antineoplastic agents. In spite of their high physiological and pharmaceutical importance, the molecular recognition by these transporters of the amino acid side chains of short peptides and thus the mechanisms for substrate binding and specificity are far from being understood.ResultsThe X-ray crystal structure of the peptide transporter YePEPT from the bacterium Yersinia enterocolitica together with functional studies have unveiled the molecular bases for recognition, binding and specificity of dipeptides with a charged amino acid residue at the N-terminal position. In wild-type YePEPT, the significant specificity for the dipeptides Asp-Ala and Glu-Ala is defined by electrostatic interaction between the in the structure identified positively charged Lys314 and the negatively charged amino acid side chain of these dipeptides. Mutagenesis of Lys314 into the negatively charged residue Glu allowed tuning of the substrate specificity of YePEPT for the positively charged dipeptide Lys-Ala. Importantly, molecular insights acquired from the prokaryotic peptide transporter YePEPT combined with mutagenesis and functional uptake studies with human PEPT1 expressed in Xenopus oocytes also allowed tuning of human PEPT1's substrate specificity, thus improving our understanding of substrate recognition and specificity of this physiologically and pharmaceutically important peptide transporter.ConclusionThis study provides the molecular bases for recognition, binding and specificity of peptide transporters for dipeptides with a charged amino acid residue at the N-terminal position.