Unknown

Dataset Information

0

Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes.


ABSTRACT: The dependence of aboveground biomass and productivity of tropical forests on soil fertility is not fully understood, since previous studies yielded contrasting results. Here, we quantify aboveground biomass (AGB) and stem wood production, and examine the impact of soil chemistry on these parameters in mature tropical forest stands of the equatorial Andes in Ecuador. In 80 plots of 0.04 ha at four elevation levels (500, 1,000, 1,500 and 2,000 m a.s.l., total sample area = 3.2 ha), we measured ten important soil chemical parameters, inventoried all trees ?10 cm dbh and monitored stem diameter growth with dendrometer tapes in 32 plots. Top canopy height and stem density significantly decreased from 500 to 2,000 m, while tree basal area increased and AGB remained invariant (344 ± 17 Mg DM ha(-1), mean ± SE) with elevation. Wood specific gravity (WSG) showed a significant, but small, decrease. Stem wood production decreased from 4.5 to 3.2 Mg DM ha(-1) year(-1) along the transect, indicating a higher biomass turnover at lower elevations. The only soil variable that covaried with AGB was exchangeable K in the topsoil. WSG increased with decreases in N mineralisation rate, soil pH and extractable Ca and P concentrations. Structural equation modelling (SEM) revealed that nitrogen availability acts on stem wood production only indirectly through a negative relation between N mineralisation rate and WSG, and a positive effect of a lowered WSG on stem growth. The SEM analysis showed neither direct nor indirect effects of resin-extractable P on wood production, but a negative P influence on AGB. We conclude that nitrogen availability significantly influences productivity in these Andean forests, but both N and P are affecting wood production mainly indirectly through alterations in WSG and stem density; the growth-promoting effect of N is apparently larger than that of P.

SUBMITTER: Unger M 

PROVIDER: S-EPMC3422456 | biostudies-literature | 2012 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes.

Unger Malte M   Homeier Jürgen J   Leuschner Christoph C  

Oecologia 20120314 1


The dependence of aboveground biomass and productivity of tropical forests on soil fertility is not fully understood, since previous studies yielded contrasting results. Here, we quantify aboveground biomass (AGB) and stem wood production, and examine the impact of soil chemistry on these parameters in mature tropical forest stands of the equatorial Andes in Ecuador. In 80 plots of 0.04 ha at four elevation levels (500, 1,000, 1,500 and 2,000 m a.s.l., total sample area = 3.2 ha), we measured te  ...[more]

Similar Datasets

| S-EPMC11318175 | biostudies-literature
| S-EPMC4718046 | biostudies-literature
| PRJNA615753 | ENA
| PRJNA804251 | ENA
| S-EPMC9290995 | biostudies-literature
| S-EPMC4632129 | biostudies-other
| S-EPMC10110524 | biostudies-literature
| S-EPMC3084812 | biostudies-other
| S-EPMC9298317 | biostudies-literature
| S-EPMC9277413 | biostudies-literature