Project description:The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
Project description:An effective catalyst has been developed for the three-component reaction of aldehydes, anilines and phosphites in an asymmetric catalytic Kabachnik-Fields reaction to give α-aminophosphonates. A catalyst was sought that would give high asymmetric inductions for aromatic and, and more particularly, for aliphatic aldehydes since there has not previously been an effective catalyst developed for this class of aldehydes. The optimal catalyst is prepared from three equivalents of the 7,7'-di-t-butylVANOL ligand, one equivalent of N-methylimidazole and one equivalent of zirconium tetraisopropoxide. This catalyst was most efficient in the presence of 10 mol% benzoic acid. Optimal conditions for aryl aldehydes required the use of 3,5-diisopropyl-2-hydroxyaniline and gave the aryl α-aminophosphonates in up to 96% yield and 98% ee over 11 different aryl aldehydes. The best aniline for aliphatic aldehydes was found to be 3-t-butyl-2-hydroxyaniline and gave the corresponding phosphonates in up to 83% yield and 97% ee over 18 examples. The asymmetric inductions for aliphatic aldehydes were comparable with those for aromatic aldehydes with a mean induction of 90% ee for the former and 91% ee for the latter. The best method for the liberation of the free amine from the aniline substituted α-aminophosphonates involved oxidation with N-iodosuccinimide.
Project description:An unprecedented highly diastereoselective and enantioselective aldol reaction of α-alkyl azlactones and aliphatic aldehydes was achieved with cinchona alkaloid catalysts. To our knowledge, this reaction provides the first useful catalytic asymmetric access toward β-hydroxy-α-amino acids bearing alkyl substituents, which are structural motifs embedded in many natural products.
Project description:The first direct catalytic asymmetric synthesis of γ-amino ketones was realized by the development of a highly diastereoselective and enantioselective C-C bond-forming umpolung reaction of imines and enones under the catalysis of a new cinchona alkaloid-derived phase-transfer catalyst. In a loading ranging from 0.02 to 2.5 mol %, the catalyst activates a broad range of trifluoromethyl imines and aldimines as nucleophiles to engage in chemo-, regio-, diastereo- and enantioselective C-C bond-forming reactions with acyclic and cyclic enones, thereby converting these readily available prochiral starting materials into highly enantiomerically enriched chiral γ-amino ketones in synthetically useful yields. Enabled by this unprecedented umpolung reaction of imines, conceptually new and concise routes were developed for the asymmetric synthesis of nitrogen-heterocycles such as pyrrolidines and indolizidines.
Project description:The first multicomponent catalytic asymmetric aziridination reaction is developed to give aziridine-2-carboxylic esters with very high diastereo- and enantioselectivity from aromatic and aliphatic aldehydes. This new method pushes the boundary of the aziridination reaction to substrates that failed with preformed imines.
Project description:A catalytic methodology for the enantioselective addition of alkylzirconium reagents to aliphatic aldehydes is reported here. The versatile and readily accessible chiral Ph-BINMOL ligand, in the presence of Ti(OiPr)4 and a zinc salt, facilitates the reaction, which proceeds under mild conditions and is compatible with functionalized nucleophiles. The alkylzirconium reagents are conveniently generated in situ by hydrozirconation of alkenes with the Schwartz reagent. This work is a continuation of our previous work on aromatic aldehydes.
Project description:Cyclopropenimine 1 is shown to catalyze Mannich reactions between glycine imines and N-Boc-aldimines with high levels of enantio- and diastereocontrol. The reactivity of 1 is shown to be substantially greater than that of a widely used thiourea cinchona alkaloid-derived catalyst. A variety of aryl and aliphatic N-Boc-aldimines are effective substrates for this transformation. A preparative-scale reaction to deliver >90 mmol of product is shown using 1 mol % catalyst. The products of this transformation can be converted into several useful derivatives.
Project description:Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.
Project description:We describe an unprecedented cycloaddition reaction of 2-pyrones with aliphatic nitroalkenes catalyzed by a new bifunctional cinchona alkaloid-derived catalyst bearing a bulky TIPS-ether at the 9-position. The [2.2.2] bicyclic adducts were obtained in good yield with excellent diastereo- and enantioselectivity. Carbon isotope effects were measured by (13)C NMR and are indicative of a stepwise mechanism. Finally, a synthetic application is demonstrated, highlighting the utility of the cycloadducts.
Project description:Seven potassium Boc-protected secondary aminomethyltrifluoroborates were prepared in a standardized two-step process. The Suzuki-Miyaura cross-coupling reaction was studied with this new class of nucleophiles, and a large variety of aryl and hetaryl chlorides provided the desired products in good to excellent yields, thereby allowing easy access to secondary aminomethyl substructures.