Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia.
Ontology highlight
ABSTRACT: Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and meet anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Because innate immunity gene induction depends on NF-?B RelA (also known as p65) during pneumonia, we generated a murine model of RelA mutated throughout the alveolar epithelium. In response to LPS, only 2 of 84 cytokine transcripts (CCL20 and CXCL5) were blunted in lungs of mutants, suggesting that a very limited subset of immune mediators is selectively elaborated by the alveolar epithelium. Lung CCL20 induction required epithelial RelA regardless of stimulus, whereas lung CXCL5 expression depended on RelA after instillation of LPS but not pneumococcus. RelA knockdown in vitro suggested that CXCL5 induction required RelA in type II cells but not type I cells. Sorted cell populations from mouse lungs revealed that CXCL5 was induced during pneumonia in type I cells, which did not require RelA. TLR2 and STING were also induced in type I cells, with RelA essential for TLR2 but not STING. To our knowledge, these data are the first direct demonstration that type I cells, which constitute the majority of the alveolar surface, mount innate immune responses during bacterial infection. These are also, to our knowledge, the first evidence for entirely RelA-independent pathways of innate immunity gene induction in any cell during pneumonia.
SUBMITTER: Yamamoto K
PROVIDER: S-EPMC3424336 | biostudies-literature | 2012 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA