Unknown

Dataset Information

0

Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates.


ABSTRACT: The ability to design biomaterials that interact with biological environments in a predictable manner necessitates an improved understanding of how surface chemistry influences events such as protein adsorption and cell adhesion. In this work, we examined mechanisms governing the interactions between 3T3 fibroblasts and nylon-3 polymers, which have a protein-like polyamide backbone and are highly amenable to tuning of chemical and physical properties. Protein adsorption and cell adhesion to a library of nylon-3 polymers were characterized and analyzed by partial least squares regression. This analysis revealed that specific chemical features of the nylon-3 polymers correlated with the extent of protein adsorption, which, in turn, correlated with cell adhesion in a serum-containing environment. In contrast, in a serum-free environment, cell adhesion could be predicted solely from chemical properties. Enzymatic treatments of 3T3 cells before plating indicated that proteins bound to the cell surface mediated cell-nylon-3 polymer interactions under serum-free conditions, with additional analysis suggesting that cell-associated fibronectin played a dominant role in adhesion in the absence of serum. The mechanistic insight gained from these studies can be used to inform the design of new polymer structures in addition to providing a basis for continued development of nylon-3 copolymers for tissue engineering applications.

SUBMITTER: Liu R 

PROVIDER: S-EPMC3429641 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates.

Liu Runhui R   Vang Kang Z KZ   Kreeger Pamela K PK   Gellman Samuel H SH   Masters Kristyn S KS  

Journal of biomedical materials research. Part A 20120524 10


The ability to design biomaterials that interact with biological environments in a predictable manner necessitates an improved understanding of how surface chemistry influences events such as protein adsorption and cell adhesion. In this work, we examined mechanisms governing the interactions between 3T3 fibroblasts and nylon-3 polymers, which have a protein-like polyamide backbone and are highly amenable to tuning of chemical and physical properties. Protein adsorption and cell adhesion to a li  ...[more]

Similar Datasets

| S-EPMC6645086 | biostudies-literature
| S-EPMC8361134 | biostudies-literature
| S-EPMC8106957 | biostudies-literature
| S-EPMC152248 | biostudies-literature
| S-EPMC8362025 | biostudies-literature
| S-EPMC5764198 | biostudies-literature
| S-EPMC2944785 | biostudies-literature
| S-EPMC2976662 | biostudies-literature
| S-EPMC2928751 | biostudies-literature
2022-07-26 | E-MTAB-11932 | biostudies-arrayexpress