Edwardsiella tarda Eta1, an in vivo-induced antigen that is involved in host infection.
Ontology highlight
ABSTRACT: Edwardsiella tarda, a Gram-negative bacterium, is a severe fish pathogen that can also infect humans. In this study, we identified, via in vivo-induced antigen technology, an E. tarda antigen, Eta1, and analyzed its function in a Japanese flounder (Paralichthys olivaceus) model. Eta1 is composed of 226 residues and shares homology with putative bacterial adhesins. Quantitative real-time reverse transcriptase (RT)-PCR analysis indicated that when cultured in vitro, eta1 expression was growth phase dependent and reached maximum at mid-logarithmic phase. During infection of flounder lymphocytes, eta1 expression was drastically increased at the early stage of infection. Compared to the wild type, the eta1-defective mutant, TXeta1, was unaffected in growth but exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, and impaired ability to invade flounder lymphocytes and to block the immune response of host cells. The lost virulence of TXeta1 was restored when a functional eta1 gene was reintroduced into the strain. Western blot and immunodetection analyses showed that Eta1 is localized to the outer membrane and exposed on the surface of E. tarda and that recombinant Eta1 (rEta1) was able to interact with flounder lymphocytes. Consistent with these observations, antibody blocking of Eta1 inhibited E. tarda infection at the cellular level. Furthermore, when used as a subunit vaccine, rEta1 induced strong protective immunity in flounder against lethal E. tarda challenge. Taken together, these results indicate that Eta1 is an in vivo-induced antigen that mediates pathogen-host interaction and, as a result, is required for optimal bacterial infection.
SUBMITTER: Sun Y
PROVIDER: S-EPMC3434574 | biostudies-literature | 2012 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA