Unknown

Dataset Information

0

Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis.


ABSTRACT: In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henle's loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10-deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis.

SUBMITTER: Breiderhoff T 

PROVIDER: S-EPMC3435183 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis.

Breiderhoff Tilman T   Himmerkus Nina N   Stuiver Marchel M   Mutig Kerim K   Will Constanze C   Meij Iwan C IC   Bachmann Sebastian S   Bleich Markus M   Willnow Thomas E TE   Müller Dominik D  

Proceedings of the National Academy of Sciences of the United States of America 20120813 35


In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henle's loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport d  ...[more]

Similar Datasets

| S-EPMC3378375 | biostudies-literature
| S-EPMC11011785 | biostudies-literature
2009-01-26 | E-GEOD-13669 | biostudies-arrayexpress
2009-01-26 | GSE13669 | GEO
| S-EPMC2488270 | biostudies-literature
| S-EPMC2692445 | biostudies-literature
| S-EPMC3949033 | biostudies-literature
| S-EPMC3469600 | biostudies-literature
| S-EPMC6071062 | biostudies-literature
| S-EPMC7611110 | biostudies-literature