Unknown

Dataset Information

0

Empirical evaluation of scoring functions for Bayesian network model selection.


ABSTRACT: In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.

SUBMITTER: Liu Z 

PROVIDER: S-EPMC3439716 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Empirical evaluation of scoring functions for Bayesian network model selection.

Liu Zhifa Z   Malone Brandon B   Yuan Changhe C  

BMC bioinformatics 20120911


In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures  ...[more]

Similar Datasets

| S-EPMC3080825 | biostudies-other
| S-EPMC6567646 | biostudies-literature
| S-EPMC5159802 | biostudies-literature
| S-EPMC6165880 | biostudies-literature
| S-EPMC4666609 | biostudies-literature
2018-10-18 | PXD008463 | Pride
| S-EPMC4788432 | biostudies-literature
| S-EPMC3985471 | biostudies-literature
| S-EPMC4291136 | biostudies-literature
| S-EPMC3969253 | biostudies-literature