Unknown

Dataset Information

0

Flux variability scanning based on enforced objective flux for identifying gene amplification targets.


ABSTRACT:

Background

In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model's prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes.

Results

We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via "GR constraints". This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation.

Conclusions

FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be generally useful for developing industrially important microbial strains having enhanced capabilities of producing chemicals of interest.

SUBMITTER: Park JM 

PROVIDER: S-EPMC3443430 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Flux variability scanning based on enforced objective flux for identifying gene amplification targets.

Park Jong Myoung JM   Park Hye Min HM   Kim Won Jun WJ   Kim Hyun Uk HU   Kim Tae Yong TY   Lee Sang Yup SY  

BMC systems biology 20120821


<h4>Background</h4>In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, s  ...[more]

Similar Datasets

| S-EPMC4979253 | biostudies-literature
2024-09-10 | GSE276399 | GEO
| S-EPMC2963619 | biostudies-literature
| S-EPMC2629979 | biostudies-literature
| S-EPMC4366310 | biostudies-literature
| S-EPMC10258195 | biostudies-literature
| S-EPMC4555035 | biostudies-literature
| S-EPMC10312551 | biostudies-literature
| S-EPMC2869140 | biostudies-literature
| S-EPMC10237425 | biostudies-literature