Project description:BackgroundThe natriuretic peptides play an important role in salt homeostasis and blood pressure regulation. It has been suggested that obesity promotes a relative natriuretic peptide deficiency, but this has been a variable finding in prior studies and the cause is unknown.AimThe aim of this study was to examine the association between obesity and natriuretic peptide levels and evaluate the role of hyperinsulinemia and testosterone as mediators of this interaction.MethodsWe studied 7770 individuals from the Framingham Heart Study (n = 3833, 54% women) and the Malmö Diet and Cancer study (n = 3918, 60% women). We examined the relation of plasma N-terminal pro-B-type natriuretic peptide levels (N-BNP) with obesity, insulin resistance, and various metabolic subtypes.ResultsObesity was associated with 6-20% lower levels of N-BNP (P < 0.001 in Framingham, P = 0.001 in Malmö), whereas insulin resistance was associated with 10-30% lower levels of N-BNP (P < 0.001 in both cohorts). Individuals with obesity who were insulin sensitive had only modest reductions in N-BNP compared with nonobese, insulin-sensitive individuals. On the other hand, individuals who were nonobese but insulin resistant had 26% lower N-BNP in Framingham (P < 0.001) and 10% lower N-BNP in Malmö (P < 0.001), compared with nonobese and insulin-sensitive individuals. Adjustment for serum-free testosterone did not alter these associations.ConclusionsIn both nonobese and obese individuals, insulin resistance is associated with lower natriuretic peptide levels. The relative natriuretic peptide deficiency seen in obesity could be partly attributable to insulin resistance, and could be one mechanism by which insulin resistance promotes hypertension.
Project description:Prevalence of cardiovascular (CV) disease is increasing worldwide. One of the most important risk factors for CV disease is hypertension that is very often related to obesity and metabolic syndrome. The search for key mechanisms, linking high blood pressure (BP), glucose and lipid dysmetabolism together with higher CV risk and mortality, is attracting increasing attention. Cardiac natriuretic peptides (NPs), including ANP and BNP, may play a crucial role in maintaining CV homeostasis and cardiac health, given their impact not only on BP regulation, but also on glucose and lipid metabolism. The summa of all metabolic activities of cardiac NPs, together with their CV and sodium balance effects, may be very important in decreasing the overall CV risk. Therefore, in the next future, cardiac NPs system, with its two receptors and a neutralizing enzyme, might represent one of the main targets to treat these multiple related conditions and to reduce hypertension and metabolic-related CV risk.
Project description:Cancer is a leading cause of the death worldwide. Since the National Cancer Act in 1971, various cancer treatments were developed including chemotherapy, surgery, radiation therapy and so forth. However, sequela of such cancer therapies and cachexia are problem to the patients. The primary mechanism of cancer sequela and cachexia is closely related to reactive oxygen species (ROS) and inflammation. As antioxidant properties of numerous plant extracts have been widely reported, plant-derived drugs may have efficacy on managing the sequela and cachexia. In this study, recent seventy-four studies regarding plant extracts showing ability to manage the sequela and cachexia were reviewed. Some plant-derived antioxidants inhibited cancer proliferation and inflammation after surgery and others prevented chemotherapy-induced normal cell apoptosis. Also, there are plant extracts that suppressed radiation-induced oxidative stress and cell damage by elevation of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and regulation of B-cell lymphoma 2 (BcL-2) and Bcl-2-associated X protein (Bax). Cachexia was also alleviated by inhibition of tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) by plant extracts. This review focuses on the potential of plant extracts as great therapeutic agents by controlling oxidative stress and inflammation.
Project description:Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Project description:BackgroundCachexia worsens long-term prognosis of patients with heart failure (HF). Effective treatment of cachexia is missing. We seek to characterize mechanisms of cachexia in adipose tissue, which could serve as novel targets for the treatment.MethodsThe study was conducted in advanced HF patients (n = 52; 83% male patients) undergoing heart transplantation. Patients with ≥7.5% non-intentional body weight (BW) loss during the last 6 months were rated cachectic. Clinical characteristics and circulating markers were compared between cachectic (n = 17) and the remaining, BW-stable patients. In epicardial adipose tissue (EAT), expression of selected genes was evaluated, and a combined metabolomic/lipidomic analysis was performed to assess (i) the role of adipose tissue metabolism in the development of cachexia and (ii) potential impact of cachexia-associated changes on EAT-myocardium environment.ResultsCachectic vs. BW-stable patients had higher plasma levels of natriuretic peptide B (BNP; 2007 ± 1229 vs. 1411 ± 1272 pg/mL; P = 0.010) and lower EAT thickness (2.1 ± 0.8 vs. 2.9 ± 1.4 mm; P = 0.010), and they were treated with ~2.5-fold lower dose of both β-blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACE/ARB-inhibitors). The overall pattern of EAT gene expression suggested simultaneous activation of lipolysis and lipogenesis in cachexia. Lower ratio between expression levels of natriuretic peptide receptors C and A was observed in cachectic vs. BW-stable patients (0.47 vs. 1.30), supporting activation of EAT lipolysis by natriuretic peptides. Fundamental differences in metabolome/lipidome between BW-stable and cachectic patients were found. Mitochondrial phospholipid cardiolipin (CL), specifically the least abundant CL 70:6 species (containing C16:1, C18:1, and C18:2 acyls), was the most discriminating analyte (partial least squares discriminant analysis; variable importance in projection score = 4). Its EAT levels were higher in cachectic as compared with BW-stable patients and correlated with the degree of BW loss during the last 6 months (r = -0.94; P = 0.036).ConclusionsOur results suggest that (i) BNP signalling contributes to changes in EAT metabolism in cardiac cachexia and (ii) maintenance of stable BW and 'healthy' EAT-myocardium microenvironment depends on the ability to tolerate higher doses of both ACE/ARB inhibitors and β-adrenergic blockers. In line with preclinical studies, we show for the first time in humans the association of cachexia with increased adipose tissue levels of CL. Specifically, CL 70:6 could precipitate wasting of adipose tissue, and thus, it could represent a therapeutic target to ameliorate cachexia.
Project description:Activation of thermogenesis in brown adipose tissue (BAT) and the ability to increase uncoupling protein 1 (UCP1) levels and mitochondrial biogenesis in white fat (termed 'browning'), has great therapeutic potential to treat obesity and its comorbidities because of the net increase in energy expenditure. ?-adrenergic-cAMP-PKA signaling has long been known to regulate these processes. Recently PKA-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) was shown to be necessary for adipose 'browning' as well as proper development of the interscapular BAT. In addition to cAMP-PKA signaling pathways, cGMP-PKG signaling also promotes this browning process; however, it is unclear whether or not mTORC1 is also necessary for cGMP-PKG induced browning.Activation of mTORC1 by natriuretic peptides (NP), which bind to and activate the membrane-bound guanylyl cyclase, NP receptor A (NPRA), was assessed in mouse and human adipocytes in vitro and mouse adipose tissue in vivo.Activation of mTORC1 by NP-cGMP signaling was observed in both mouse and human adipocytes. We show that NP-NPRA-PKG signaling activate mTORC1 by direct PKG phosphorylation of Raptor at Serine 791. Administration of B-type natriuretic peptide (BNP) to mice induced Ucp1 expression in inguinal adipose tissue in vivo, which was completely blocked by the mTORC1 inhibitor rapamycin.Our results demonstrate that NP-cGMP signaling activates mTORC1 via PKG, which is a component in the mechanism of adipose browning.
Project description:AimsCardiac cachexia is a wasting syndrome characterized by chronic inflammation and high mortality. Fibroblast growth factor 21 (FGF-21) and monocyte chemoattractant protein 1 (MCP-1) are associated with cardiovascular disease and systemic inflammation. We investigated FGF-21 and MCP-1 in relations to cardiac function, inflammation, and wasting in patients with heart failure with reduced ejection fraction (HFrEF) and cardiac cachexia.Methods and resultsPlasma FGF-21 and MCP-1 were measured in a cross-sectional study among the three study groups: 19 patients with HFrEF with cardiac cachexia, 19 patients with HFrEF without cachexia, and 19 patients with ischaemic heart disease and preserved ejection fraction. Patients with HFrEF and cardiac cachexia displayed higher FGF-21 levels median (inter quantile range) 381 (232-577) pg/mL than patients with HFrEF without cachexia 224 (179-309) pg/mL and ischaemic heart disease patients 221 (156-308) pg/mL (P = 0.0496). No difference in MCP-1 levels were found among the groups (P = 0.345). In a multivariable regression analysis, FGF-21 (logarithm 2) was independently associated with interleukin 6 (logarithm 2) (P = 0.015) and lower muscle mass (P = 0.043), while no relation with N-terminal pro-hormone brain natriuretic peptide was observed.ConclusionsFibroblast growth factor 21 (FGF-21) levels were elevated in patients with HFrEF and cardiac cachexia, which could be mediated by increased inflammation and muscle wasting rather than impaired cardiac function.
Project description:Cardiac natriuretic peptides (NPs) play a fundamental role in maintaining cardiovascular (CV) and renal homeostasis. Moreover, they also affect glucose and lipid metabolism. We performed a systematic review and meta-analysis of studies investigating the association of NPs with serum lipid profile. A PubMed and Scopus search (2005-2018) revealed 48 studies reporting the association between NPs and components of lipid profile [total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), high-density lipoprotein cholesterol (HDLc) and triglycerides (TG)]. Despite high inconsistency across studies, NPs levels were inversely associated with TC [k?=?32; pooled r?=?-0.09; I2?=?90.26%], LDLc [k?=?31; pooled r?=?-0.09; I2?=?82.38%] and TG [k?=?46; pooled r?=?-0.11; I2?=?94.14%], while they were directly associated with HDLc [k?=?41; pooled r?=?0.06; I2?=?87.94%]. The relationship with LDLc, HDLc and TG lost significance if only studies on special populations (works including subjects with relevant acute or chronic conditions that could have significantly affected the circulating levels of NPs or lipid profile) or low-quality studies were taken into account. The present study highlights an association between higher NP levels and a favorable lipid profile. This confirms and extends our understanding of the metabolic properties of cardiac NPs and their potential in CV prevention.
Project description:Many advances have been made in the diagnosis and management of heart failure (HF) in recent years. Cardiac biomarkers are an essential tool for clinicians: point of care B-type natriuretic peptide (BNP) and its N-terminal counterpart (NT-proBNP) levels help distinguish cardiac from non-cardiac causes of dyspnea and are also useful in the prognosis and monitoring of the efficacy of therapy. One of the major limitations of HF biomarkers is in obese patients where the relationship between BNP and NT-proBNP levels and myocardial stiffness is complex. Recent data suggest an inverse relationship between BNP and NT-proBNP levels and body mass index. Given the ever-increasing prevalence of obesity world-wide, it is important to understand the benefits and limitations of HF biomarkers in this population. This review will explore the biology, physiology, and pathophysiology of these peptides and the cardiac endocrine paradox in HF. We also examine the clinical evidence, mechanisms, and plausible biological explanations for the discord between BNP levels and HF in obese patients.
Project description:ObjectiveNatriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase (GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades in energy metabolism.Research design and methodsWe used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA) heterozygous knockout (GCA(+/-)) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect of NPs in cultured myocytes.ResultsBNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1alpha and PPARdelta. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated by feeding a high-fat diet, while GCA(+/-) mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression of PGC-1alpha and PPARdelta and mitochondrial content in cultured myocytes.ConclusionsThe findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and consumption.