Unknown

Dataset Information

0

The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif.


ABSTRACT: The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid-state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73?Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix ?3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.

SUBMITTER: Ohlenschlager O 

PROVIDER: S-EPMC3458545 | biostudies-literature | 2012 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuc  ...[more]

Similar Datasets

| S-EPMC3058916 | biostudies-literature
| S-EPMC3718744 | biostudies-literature
| S-EPMC4393104 | biostudies-literature
| S-EPMC5576893 | biostudies-literature
| S-EPMC3500628 | biostudies-literature
| S-EPMC4109528 | biostudies-literature
| S-EPMC3560432 | biostudies-literature
| S-EPMC7650617 | biostudies-literature
| S-EPMC4624395 | biostudies-literature
| S-EPMC8210318 | biostudies-literature