Project description:Upregulation of the immunosuppressive cell surface glycoprotein, CD200, is a common feature of acute myeloid leukemia (AML) and is associated with poor patient outcome. We investigated whether CD200 overexpression on AML cells could specifically compromise patient natural killer (NK) cell anti-tumor responses. We found that CD200(hi) patients showed a 50% reduction in the frequency of activated NK cells (CD56(dim)CD16(+)) compared with CD200(lo) patients. Additionally, NK receptor expression (NKp44 and NKp46) on these cells was also significantly downregulated in CD200(hi) patients. To assess whether NK cell activity was directly influenced by CD200 expression, we examined the effect of ectopic expression of CD200. These assays revealed that both NK cell cytolytic activity and interferon-? response were significantly reduced toward CD200(+) leukemic targets and that these targets showed increased survival compared with CD200(-) cells. Similarly, NK cells isolated from AML patients were less functionally active toward CD200(hi) autologous blasts from both cytolytic and immunoregulatory perspectives. Finally, blocking CD200 alone was sufficient to recover a significant proportion of NK cell cytolytic activity. Together, these findings provide the first evidence that CD200 has a direct and significant suppressive influence on NK cell activity in AML patients and may contribute to the increased relapse rate in CD200(+) patients.
Project description:The leukemia stem cell (LSC) populations of acute myeloid leukemia (AML) exhibit phenotypic, genetic, and functional heterogeneity that contribute to therapy failure and relapse. Progress toward understanding the mechanistic basis for therapy resistance in LSCs has been hampered by difficulties in isolating cell fractions that enrich for the entire heterogeneous population of LSCs within individual AML samples. We previously reported that CD200 gene expression is upregulated in LSC-containing AML fractions. Here, we show that CD200 is present on a greater proportion of CD45dim blasts compared with more differentiated CD45high cells in AML patient samples. In 75% (49 of 65) of AML cases we examined, CD200 was expressed on ≥10% of CD45dim blasts; of these, CD200 identified LSCs within the blast population in 9 of 10 (90%) samples tested in xenotransplantation assays. CD200+ LSCs could be isolated from CD200+ normal HSCs with the use of additional markers. Notably, CD200 expression captured both CD34- and CD34+ LSCs within individual AML samples. Analysis of highly purified CD200+ LSC-containing fractions from NPM1-mutated AMLs, which are commonly CD34-, exhibited an enrichment of primitive gene expression signatures compared with unfractionated cells. Overall, our findings support CD200 as a novel LSC marker that is able to capture the entire LSC compartment from AML patient samples, including those with NPM1 mutation.
Project description:ObjectivesThis study aims to retrospectively assess C-lectin-like molecule 1 (CLL-1) bimodal expression on CD34+ blasts in acute myeloid leukemia (AML) patients (total N = 306) and explore potential CLL-1 bimodal associations with leukemia and patient-specific characteristics.MethodsFlow cytometry assays were performed to assess the deeper immunophenotyping of CLL-1 bimodality. Cytogenetic analysis was performed to characterize the gene mutation on CLL-1-negative subpopulation of CLL-1 bimodal AML samples.ResultsThe frequency of a bimodal pattern of CLL-1 expression of CD34+ blasts ranged from 8% to 65% in the different cohorts. Bimodal CLL-1 expression was most prevalent in patients with MDS-related AML (P = .011), ELN adverse risk (P = .002), NPM1 wild type (WT, P = .049), FLT3 WT (P = .035), and relatively low percentages of leukemia-associated immunophenotypes (P = .006). Additional immunophenotyping analysis revealed the CLL-1- subpopulation may consist of pre-B cells, immature myeloblasts, and hematopoietic stem cells. Furthermore, (pre)-leukemic mutations were detected in both CLL-1+ and CLL-1- subfractions of bimodal samples (N = 3).ConclusionsC-lectin-like molecule 1 bimodality occurs in about 25% of AML patients and the CLL-1- cell population still contains malignant cells, hence it may potentially limit the effectiveness of CLL-1-targeted therapies and warrant further investigation.
Project description:Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stroke.
Project description:Prostate cancer is still one of the most common malignancies in men all around the world. The mechanism of how prostate cancer initiates and develops is still not clear. Here in this study, we show that tumor suppressor ZBTB38 could suppress the migration and proliferation of prostate cancer cells. We find lower ZBTB38 expression in prostate cancer tissues, which also strongly predicts a poorer prognosis of prostate cancer. ZBTB38 binds DKK1 (Dickkopf WNT signaling pathway inhibitor 1) locus and promotes DKK1 expression in prostate cancer cell lines. Consistently, reduction of DKK1 expression significantly restores ZBTB38-mediated suppression of migration and proliferation of prostate cancer cell lines. Mechanistically, we find that ZBTB38 primarily binds the promoters of target genes, and differentially regulates the expression of 1818 genes. We also identify PRKDC (protein kinase, DNA-activated, catalytic subunit) as a ZBTB38-interacting protein that could repress the function of ZBTB38 in suppressing migration and proliferation of prostate cancer cells. Taken together, our results indicate that ZBTB38 could repress cell migration and proliferation in prostate cancer via promoting DKK1 expression, and also provide evidence supporting ZBTB38 as a potential prognosis marker for prostate cancer.
Project description:Expanding on our prior studies with cord blood T cells, we hypothesized that primary acute myeloid leukemia (AML)-reactive autologous T cells could be generated ex vivo under immunomodulatory conditions. We purified AML and T cells from 8 newly diagnosed high-risk patients. After 2 weeks expansion, T cells were stimulated with interferon-?-treated autologous AML weekly × 3, interleukin-15, and agonistic anti-CD28 antibody. Cytotoxic T cells and ELISpot assays tested functionality; reverse transcriptase quantitative polymerase chain reaction tested AML and T-cell gene expression profiles. On the basis of combined positive ELIspot and cytotoxic T cells assays, T cells reactive against AML were generated in 5 of 8 patients. Treg proportion declined after cocultures in reactive T-cell samples. AML-reactive T cells displayed an activated gene expression profile. "Resistant" AML blasts displayed genes associated with immunosuppressive myeloid-derived suppressor cells. We discuss our approach to creating primary AML-reactive autologous T cell and limitations that require further work. Our study provides a platform for future research targeting on generating autologous leukemia-reactive T cells.
Project description:Recently, the role of lactate as merely an end product of cancer cell metabolism has been reassessed. Lactate has been implicated in more biological processes than previously understood and drives tumor progression. Here, we demonstrated that the bone marrow lactate concentrations in acute myeloid leukemia (AML) patients were substantially higher than those in their healthy control counterparts. Moreover, AML blasts from bone marrow expressed significantly higher lactate dehydrogenase-A (LDHA) levels. Further studies revealed that LDHA expression was regulated through the HIF1α pathway. Elevated lactate levels were indicative of alterations in CD8+ T cell cytolytic phenotype and activity. An in vitro study showed that the lactate treatment group had significantly higher percentages of CD8+ TEM and CD8+ TEMRA cells as well as higher PD-1 expression in these cells than the control group. Lactate induced the loss of the effector function of CD8+ T cells by altering lytic granule exocytosis. T cell dysfunction is characterized by an increase in terminally differentiated phenotypes, sustained expression of PD-1, and accelerated decline of cytolytic competence. Moreover, the TOX gene was found to be correlated with lactate production and implicated in CD8+ T cell dysfunction. AML patients in complete remission after chemotherapy had markedly lower lactate concentrations, reduced CD8+ TEM and CD8+ TEMRA cells and PD-1 expression, and increased perforin and granzyme B. However, no difference was found in the relapsed patients. The study presented here has established lactate as a predictive biomarker for patient response to antitumor therapies and demonstrated that targeting this gene in AML patients could be a meaningful precision therapeutic strategy.
Project description:Acute Myeloid Leukemia (AML) has grave prognosis due to aggressive nature of the disease, the toxicity of standard treatment, and overall low cure rates. We recently showed that AML cells in established culture treated with Cytarabine (AraC) and a differentiation agent combination show enhancement of AraC cytotoxicity. Here we elucidate molecular changes which underlie this observation with focus on AML blasts in primary culture. The cells were treated with AraC at concentrations achievable in clinical settings, and followed by the addition of Doxercalciferol, a vitamin D2 derivative (D2), together with Carnosic acid (CA), a plant-derived antioxidant. Importantly, although AraC is also toxic to normal bone marrow cell population, the enhanced cell kill by D2/CA was limited to malignant blasts. This enhancement of cell death was associated with activation of the monocytic differentiation program as shown by molecular markers, and the increased expression of vitamin D receptor (VDR). Apoptosis elicited by this treatment is caspase-dependent, and the optimal blast killing required the increased expression of the apoptosis regulator Bim. These data suggest that testing of this regimen in the clinic is warranted.