Project description:Introduction: The relationship between coronary artery flow and left ventricular (LV) function during hemorrhagic shock remains unknown. The aim of this study was to quantify coronary artery flow directionality alongside left ventricular function through the four classes of hemorrhage shock. Methods: Following baseline data collection, swine were exsanguinated into cardiac arrest via the femoral artery using a logarithmic bleed, taking each animal through the four classes of hemorrhagic shock based on percent bleed (class I: 15%; class II: 15%-30%; class III: 30%-40%; class IV: >40%). Telemetry data, left ventricular pressure-volume loops, and left anterior descending artery flow tracings over numerous cardiac cycles were collected and analyzed for each animal throughout. Results: Five male swine (mean 72 ± 12 kg) were successfully exsanguinated into cardiac arrest. Mean left ventricular end-diastolic volume, end-diastolic pressure, and stroke work decreased as the hemorrhagic shock class progressed (p < 0.001). The proportion of diastole spent with retrograde coronary flow was also associated with class of hemorrhagic shock (mean 5.6% of diastole in baseline, to 63.9% of diastole in class IV; p < 0.0001), worsening at each class from baseline through class IV. Preload recruitable stroke work (PRSW) decreased significantly in classes II through IV (p < 0.001). Systemic Vascular Resistance (SVR) is associated with class of hemorrhage shock (p < 0.001). Conclusion: With progressive classes of hemorrhagic shock left ventricular function progressively decreased, and the coronary arteries spent a greater proportion of diastole in retrograde flow, with progressively more negative total coronary flow. Preload recruitable stroke work, a load-independent measure of inotropy, also worsened in severe hemorrhagic shock, indicating the mechanism extends beyond the drop in preload and afterload alone.
Project description:Iatrogenic acute aortic regurgitation (AR) is an uncommon condition, and its presentation as severe AR following coronary angiography or percutaneous coronary intervention (PCI) is exceedingly rare. We report a case of iatrogenic severe AR resulting from aortic valve injury caused by manipulation of the guiding catheter during PCI.
Project description:A 69-year-old patient underwent an urgent aortic valve replacement because of Streptococcus agalactiae endocarditis of his native aortic valve. Since a rapid progression of the former abscess cavity into an aortic root pseudoaneurysm with increasing paravalvular regurgitation during postoperative follow-up, reoperation was performed. In the preoperative transesophageal echocardiography (TEE) images the pseudoaneurysm completely surrounds the left coronary artery (LCA) without any signs of myocardial ischemia.
Project description:We present an uncommon case of a 48-year-old female patient with symptomatic presentation of a severe aortic regurgitation with aneurysm of the ascending aorta and progressive dyspnea. Detailed investigation of laboratory tests and imaging identified Takayasu's arteritis (TA) as the underlying etiology. Computed tomography scan revealed complete occlusion of the right carotid artery as well as stenosis at the origins of left subclavian and vertebral arteries. In addition, cardiac magnetic resonance angiogram showed aneurysm at the proximal segment of right subclavian artery. Intervention with corticosteroids effectively diminished the need for immediate surgical intervention. Treating physicians should always consider differential diagnosis of TA in the presence of atypical clinical findings in all patients with cardiac problems especially when there is valve involvement.