Unknown

Dataset Information

0

Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO.


ABSTRACT: The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Re(bipy-tBu)(CO)(3)(L) catalyst for the reduction of CO(2) to CO. A remarkable selectivity for CO(2) over H(+) was observed by stopped-flow UV-vis spectroscopy of [Re(bipy-tBu)(CO)(3)](-1). The reaction with CO(2) is about 25 times faster than the reaction with water or methanol at the same concentrations. X-ray crystallography and DFT studies of the doubly reduced anionic species suggest that the highest occupied molecular orbital (HOMO) has mixed metal-ligand character rather than being purely doubly occupied d(z)(2), which is believed to determine selectivity by favoring CO(2) (? + ?) over H(+) (? only) binding. Electrocatalytic studies performed with the addition of Brönsted acids reveal a primary H/D kinetic isotope effect, indicating that transfer of protons to Re -CO(2) is involved in the rate limiting step. Lastly, the effects of electrode surface modification on interfacial electron transfer between a semiconductor and catalyst were investigated and found to affect the observed current densities for catalysis more than threefold, indicating that the properties of the electrode surface need to be addressed when developing a homogeneous artificial photosynthetic system.

SUBMITTER: Smieja JM 

PROVIDER: S-EPMC3465436 | biostudies-literature | 2012 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO.

Smieja Jonathan M JM   Benson Eric E EE   Kumar Bhupendra B   Grice Kyle A KA   Seu Candace S CS   Miller Alexander J M AJ   Mayer James M JM   Kubiak Clifford P CP  

Proceedings of the National Academy of Sciences of the United States of America 20120531 39


The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Re(bipy-tBu)(CO)(3)(L) catalyst for the reduction of CO(2) to CO. A remarkable selectivity for CO(2) over H(+) was observed by stopped-flow UV-vis spectroscopy of [Re(bipy-tBu)(CO)(3)](-1). The reaction with CO(2) is  ...[more]

Similar Datasets

| S-EPMC8452815 | biostudies-literature
| S-EPMC9758122 | biostudies-literature
| S-EPMC6778181 | biostudies-literature
| S-EPMC10476181 | biostudies-literature
| S-EPMC10895664 | biostudies-literature
| S-EPMC9417913 | biostudies-literature
| S-EPMC10696030 | biostudies-literature
| S-EPMC6175946 | biostudies-literature
| S-EPMC7894335 | biostudies-literature
| S-EPMC6297356 | biostudies-literature