Effects of nano-titanium dioxide on freshwater algal population dynamics.
Ontology highlight
ABSTRACT: To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO(2) (ranging from controls to 300 mg n-TiO(2) L(-1)). We then examined the effects of n-TiO(2) on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO(2) had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO(2) tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations.
SUBMITTER: Kulacki KJ
PROVIDER: S-EPMC3468504 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA