Unknown

Dataset Information

0

Reliable single chip genotyping with semi-parametric log-concave mixtures.


ABSTRACT: The common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram, thereby making computation time almost independent of the number of SNPs. Furthermore, the algorithm is effective in low-MAF situations.Comparisons between SCALA and CRLMM on HapMap genotypes show very reliable calling of single arrays. Some heterozygous genotypes from HapMap are called homozygous by SCALA and to lesser extent by CRLMM too. Furthermore, HapMap's NoCalls (NN) could be genotyped by SCALA, mostly with high probability. The software is available as R scripts from the website www.math.leidenuniv.nl/~rrippe.

SUBMITTER: Rippe RC 

PROVIDER: S-EPMC3473070 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reliable single chip genotyping with semi-parametric log-concave mixtures.

Rippe Ralph C A RC   Meulman Jacqueline J JJ   Eilers Paul H C PH  

PloS one 20121016 10


The common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram, thereby making computation  ...[more]

Similar Datasets

| S-EPMC5619328 | biostudies-literature
| S-EPMC7214028 | biostudies-literature
| S-EPMC5963472 | biostudies-literature
| S-EPMC5931502 | biostudies-literature
| S-EPMC3482625 | biostudies-literature
| S-EPMC4860150 | biostudies-literature
| S-EPMC5400113 | biostudies-literature
| S-EPMC6850473 | biostudies-literature
| S-EPMC10869892 | biostudies-literature
| S-EPMC6748442 | biostudies-literature