Unknown

Dataset Information

0

Exploring androgen-regulated pathways in teleost fish using transcriptomics and proteomics.


ABSTRACT: In the environment, there are aquatic pollutants that disrupt androgen signaling in fish. Laboratory and field-based experiments have utilized omics technologies to characterize the molecular mechanisms underlying androgen-receptor agonism/antagonism. Transcriptomics and proteomics studies with 17β-trenbolone, a growth-promoting pharmaceutical found in water systems surrounding cattle feed lots, and androgens such as 17α-methyltestosterone and 17α-methyldihydrotestosterone, have been conducted in ovary and liver of fish that include the fathead minnow (FHM) (Pimephales promelas), common carp (Cyprinus carpio), Qurt medaka (Oryzias latipes), and zebrafish (Danio rerio). In this mini-review, we survey recent omics studies in fish and reveal that, despite the diversity of species and tissues examined, there are common cellular responses that are observed with waterborne androgenic treatments. Recurring themes in gene ontology include apoptosis, transport and oxidation of lipids, synthesis and transport of hormones, immune response, protein metabolism, and cell proliferation. However, we also discuss other mechanisms other than androgen receptor (AR) activation, such as responses to toxicant stress, estrogen receptor agonism, aromatization of androgens into estrogens, and inhibitory feedback mechanisms by high levels of androgens that may also explain molecular responses in fish. To further explore androgen-responsive protein networks, a sub-network enrichment analysis was performed on protein data collected from the livers of female FHMs exposed to 17β-trenbolone. We construct a putative AR-regulated protein/cell process network in the liver that includes B-lymphocyte differentiation, xenobiotic clearance, low-density lipoprotein oxidation, proliferation of smooth muscle cells, and permeability of blood vessels. We demonstrate that construction of protein networks can offer insight into cell processes that are potentially regulated by androgens.

SUBMITTER: Martyniuk CJ 

PROVIDER: S-EPMC3475975 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| PRJNA559885 | ENA
| PRJNA490473 | ENA
| S-EPMC1524722 | biostudies-literature
| S-EPMC8103497 | biostudies-literature
| S-EPMC5295800 | biostudies-literature
| S-EPMC5516940 | biostudies-literature