Unknown

Dataset Information

0

Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4).


ABSTRACT: Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca(2+)-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease.

SUBMITTER: Shaltiel L 

PROVIDER: S-EPMC3476298 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4).

Shaltiel Lior L   Paparizos Christos C   Fenske Stefanie S   Hassan Sami S   Gruner Christian C   Rötzer Katrin K   Biel Martin M   Wahl-Schott Christian A CA  

The Journal of biological chemistry 20120830 43


Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor o  ...[more]

Similar Datasets

| S-EPMC2883925 | biostudies-literature
| S-EPMC3646272 | biostudies-literature
| S-EPMC4353500 | biostudies-literature
| S-EPMC8589445 | biostudies-literature
| S-EPMC5749111 | biostudies-literature
| S-EPMC5162803 | biostudies-literature
| S-EPMC3431587 | biostudies-literature
| S-EPMC1913152 | biostudies-literature
| S-EPMC10246267 | biostudies-literature
| S-EPMC6771819 | biostudies-literature