Unknown

Dataset Information

0

Nanoscale interference patterns of gap-mode multipolar plasmonic fields.


ABSTRACT: Arbitrary spatial distributions of the electric field of light are formed through the interference of individual wavenumber mode fields with appropriate amplitudes and phases, while the maximum wavenumber in the far field is limited by the wavelength of light. In contrast, localized surface plasmons (LSPs) possess the ability to confine photons strongly into nanometer-scale areas, exceeding the diffraction limit. In particular, gap-mode LSPs produce single-nanometer-sized, highly intense localized fields, known as hot spots. Here, we show the nanoscale spatial profiles of the LSP fields within hot spots, which exhibit complicated fine structures, rather than single peaks. The nanopatterns are created by constructive and destructive interferences of dipolar, quadrupolar, and higher-order multipolar plasmonic modes, which can be drastically altered by controlling parameters of the excitation optical system. The analysis in this study would be useful for proposing new concepts for manipulation and control of light-matter interactions in nanospaces.

SUBMITTER: Tanaka Y 

PROVIDER: S-EPMC3479447 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanoscale interference patterns of gap-mode multipolar plasmonic fields.

Tanaka Yoshito Y   Sanada Akio A   Sasaki Keiji K  

Scientific reports 20121024


Arbitrary spatial distributions of the electric field of light are formed through the interference of individual wavenumber mode fields with appropriate amplitudes and phases, while the maximum wavenumber in the far field is limited by the wavelength of light. In contrast, localized surface plasmons (LSPs) possess the ability to confine photons strongly into nanometer-scale areas, exceeding the diffraction limit. In particular, gap-mode LSPs produce single-nanometer-sized, highly intense localiz  ...[more]

Similar Datasets

| S-EPMC5062594 | biostudies-literature
| S-EPMC4850388 | biostudies-literature
| S-EPMC4763218 | biostudies-literature
| S-EPMC7828546 | biostudies-literature
| S-EPMC5691180 | biostudies-literature
| S-EPMC4995427 | biostudies-literature
| S-EPMC4485956 | biostudies-literature
| S-EPMC4808410 | biostudies-literature
| S-EPMC6043596 | biostudies-literature
| S-EPMC6070957 | biostudies-literature