Ontology highlight
ABSTRACT: Background
Lymphocytes act as a major component of the adaptive immune system, taking very crucial responsibility for immunity. Differences in proportions of T-cell subpopulations in peripheral blood among individuals under same conditions provide evidence of genetic control on these traits, but little is known about the genetic mechanism of them, especially in swine. Identification of the genetic control on these variants may help the genetic improvement of immune capacity through selection.Results
To identify genomic regions responsible for these immune traits in swine, a genome-wide association study was conducted. A total of 675 pigs of three breeds were involved in the study. At 21 days of age, all individuals were vaccinated with modified live classical swine fever vaccine. Blood samples were collected when the piglets were 20 and 35 days of age, respectively. Seven traits, including the proportions of CD4+, CD8+, CD4+CD8+, CD4+CD8-, CD4-CD8+, CD4-CD8- and the ratio of CD4+ to CD8+ T cells were measured at the two ages. All the samples were genotyped for 62,163 single nucleotide polymorphisms (SNP) using the Illumina porcineSNP60k BeadChip. 40833 SNPs were selected after quality control for association tests between SNPs and each immune trait considered based on a single-locus regression model. To tackle the issue of multiple testing in GWAS, 10,000 permutations were performed to determine the chromosome-wise and genome-wise significance levels of association tests. In total, 61 SNPs with chromosome-wise significance level and 3 SNPs with genome-wise significance level were identified. 27 significant SNPs were located within the immune-related QTL regions reported in previous studies. Furthermore, several significant SNPs fell into the regions harboring known immunity-related genes, 14 of them fell into the regions which harbor some known T cell-related genes.Conclusions
Our study demonstrated that genome-wide association studies would be a feasible way for revealing the potential genetics variants affecting T-cell subpopulations. Results herein lay a preliminary foundation for further identifying the causal mutations underlying swine immune capacity in follow-up studies.
SUBMITTER: Lu X
PROVIDER: S-EPMC3481476 | biostudies-literature | 2012 Sep
REPOSITORIES: biostudies-literature
BMC genomics 20120918
<h4>Background</h4>Lymphocytes act as a major component of the adaptive immune system, taking very crucial responsibility for immunity. Differences in proportions of T-cell subpopulations in peripheral blood among individuals under same conditions provide evidence of genetic control on these traits, but little is known about the genetic mechanism of them, especially in swine. Identification of the genetic control on these variants may help the genetic improvement of immune capacity through selec ...[more]