Unknown

Dataset Information

0

Natural transmission of Plasmodium berghei exacerbates chronic tuberculosis in an experimental co-infection model.


ABSTRACT: Human populations are rarely exposed to one pathogen alone. Particularly in high incidence regions such as sub-Saharan Africa, concurrent infections with more than one pathogen represent a widely underappreciated public health problem. Two of the world's most notorious killers, malaria and tuberculosis, are co-endemic in impoverished populations in the tropics. However, interactions between both infections in a co-infected individual have not been studied in detail. Both pathogens have a major impact on the lung as the prime target organ for aerogenic Mycobacterium tuberculosis and the site for one of the main complications in severe malaria, malaria-associated acute respiratory distress syndrome (MA-ARDS). In order to study the ramifications caused by both infections within the same host we established an experimental mouse model of co-infection between Mycobacterium tuberculosis and Plasmodium berghei NK65, a recently described model for MA-ARDS. Our study provides evidence that malaria-induced immune responses impair host resistance to Mycobacterium tuberculosis. Using the natural routes of infection, we observed that co-infection exacerbated chronic tuberculosis while rendering mice less refractory to Plasmodium. Co-infected animals presented with enhanced inflammatory immune responses as reflected by exacerbated leukocyte infiltrates, tissue pathology and hypercytokinemia accompanied by altered T-cell responses. Our results--demonstrating striking changes in the immune regulation by co-infection with Plasmodium and Mycobacterium--are highly relevant for the medical management of both infections in humans.

SUBMITTER: Mueller AK 

PROVIDER: S-EPMC3482195 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Natural transmission of Plasmodium berghei exacerbates chronic tuberculosis in an experimental co-infection model.

Mueller Ann-Kristin AK   Behrends Jochen J   Hagens Kristine K   Mahlo Jacqueline J   Schaible Ulrich E UE   Schneider Bianca E BE  

PloS one 20121026 10


Human populations are rarely exposed to one pathogen alone. Particularly in high incidence regions such as sub-Saharan Africa, concurrent infections with more than one pathogen represent a widely underappreciated public health problem. Two of the world's most notorious killers, malaria and tuberculosis, are co-endemic in impoverished populations in the tropics. However, interactions between both infections in a co-infected individual have not been studied in detail. Both pathogens have a major i  ...[more]

Similar Datasets

| S-EPMC7469358 | biostudies-literature
| S-EPMC4753732 | biostudies-literature
| S-EPMC3187272 | biostudies-literature
| S-EPMC4730572 | biostudies-literature
| S-EPMC4995515 | biostudies-literature
| S-EPMC5642054 | biostudies-literature
| S-EPMC1135295 | biostudies-literature
| S-EPMC7275331 | biostudies-literature
2013-12-13 | GSE53246 | GEO
| S-EPMC3957979 | biostudies-literature