Unknown

Dataset Information

0

Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury.


ABSTRACT:

Background

Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs) have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs) labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.

Methods

GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.

Results

GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide particles, with no effect on viability and proliferation. Homing of the labeled cells into the injured carotid artery tissue could be monitored by magnetic resonance imaging.

Conclusion

Magnetically labeled ADSCs with expression of GFP can home into sites of vascular injury, and may provide new insights into understanding of cell-based therapy for cardiovascular lesions.

SUBMITTER: Qin JB 

PROVIDER: S-EPMC3487538 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury.

Qin Jin-Bao JB   Li Kang-An KA   Li Xiang-Xiang XX   Xie Qing-Song QS   Lin Jia-Ying JY   Ye Kai-Chuang KC   Jiang Mi-Er ME   Zhang Gui-Xiang GX   Lu Xin-Wu XW  

International journal of nanomedicine 20121002


<h4>Background</h4>Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs) have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs) labeled wit  ...[more]

Similar Datasets

| S-EPMC5976187 | biostudies-literature
2013-04-23 | E-GEOD-45433 | biostudies-arrayexpress
2013-04-23 | GSE45433 | GEO
| S-EPMC4399584 | biostudies-other
| S-EPMC3504380 | biostudies-literature
2023-03-09 | GSE217801 | GEO
| S-EPMC2860383 | biostudies-literature
| S-EPMC7533532 | biostudies-literature
| S-EPMC3852645 | biostudies-literature
| S-EPMC3360770 | biostudies-literature