Unknown

Dataset Information

0

Complementary strand relocation may play vital roles in RecA-based homology recognition.


ABSTRACT: RecA-family proteins mediate homologous recombination and recombinational DNA repair through homology search and strand exchange. Initially, the protein forms a filament with the incoming single-stranded DNA (ssDNA) bound in site I. The RecA-ssDNA filament then binds double-stranded DNA (dsDNA) in site II. Non-homologous dsDNA rapidly unbinds, whereas homologous dsDNA undergoes strand exchange yielding heteroduplex dsDNA in site I and the leftover outgoing strand in site II. We show that applying force to the ends of the complementary strand significantly retards strand exchange, whereas applying the same force to the outgoing strand does not. We also show that crystallographically determined binding site locations require an intermediate structure in addition to the initial and final structures. Furthermore, we demonstrate that the characteristic dsDNA extension rates due to strand exchange and free RecA binding are the same, suggesting that relocation of the complementary strand from its position in the intermediate structure to its position in the final structure limits both rates. Finally, we propose that homology recognition is governed by transitions to and from the intermediate structure, where the transitions depend on differential extension in the dsDNA. This differential extension drives strand exchange forward for homologs and increases the free energy penalty for strand exchange of non-homologs.

SUBMITTER: Peacock-Villada A 

PROVIDER: S-EPMC3488227 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complementary strand relocation may play vital roles in RecA-based homology recognition.

Peacock-Villada Alexandra A   Yang Darren D   Danilowicz Claudia C   Feinstein Efraim E   Pollock Nolan N   McShan Sarah S   Coljee Vincent V   Prentiss Mara M  

Nucleic acids research 20120831 20


RecA-family proteins mediate homologous recombination and recombinational DNA repair through homology search and strand exchange. Initially, the protein forms a filament with the incoming single-stranded DNA (ssDNA) bound in site I. The RecA-ssDNA filament then binds double-stranded DNA (dsDNA) in site II. Non-homologous dsDNA rapidly unbinds, whereas homologous dsDNA undergoes strand exchange yielding heteroduplex dsDNA in site I and the leftover outgoing strand in site II. We show that applyin  ...[more]

Similar Datasets

| S-EPMC4973255 | biostudies-literature
| S-EPMC10954442 | biostudies-literature
| S-EPMC3874182 | biostudies-literature
2013-12-01 | E-GEOD-48880 | biostudies-arrayexpress
| S-EPMC3055672 | biostudies-literature
| S-EPMC8437434 | biostudies-literature
2013-12-01 | GSE48880 | GEO
| S-EPMC3849070 | biostudies-literature
| S-EPMC2812519 | biostudies-literature
| S-EPMC6544866 | biostudies-other