Ontology highlight
ABSTRACT: Background
Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis in China. An accurate diagnosis of IgAN is dependent on renal biopsies, and there is lack of non-invasive and practical classification methods for discriminating IgAN from other primary kidney diseases. The objective of this study was to develop a classification model for the auxiliary diagnosis of IgAN using multiparameter analysis with various biological parameters.Methods
To establish an optimal classification model, 121 cases (58 IgAN vs. 63 non-IgAN) were recruited and statistically analyzed. The model was then validated in another 180 cases.Results
Of the 57 biological parameters, there were 16 parameters that were significantly different (P < 0.05) between IgAN and non-IgAN. The combination of fibrinogen, serum immunoglobulin A level, and manifestation was found to be significant in predicting IgAN. The validation accuracies of the logistic regression and discriminant analysis models were 77.5 and 77.0%, respectively at a predictive probability cut-off of 0.5, and 81.1 and 79.9%, respectively, at a predictive probability cut-off of 0.40. When the predicted probability of the equation containing the combination of fibrinogen, serum IgA level, and manifestation was more than 0.59, a patient had at least an 85.0% probability of having IgAN. When the predicted probability was lower than 0.26, a patient had at least an 88.5% probability of having non-IgAN. The results of the net reclassification improvement certificated serum Immunoglobulin A and fibrinogen had classification power for discriminating IgAN from non-IgAN.Conclusions
These models possess potential clinical applications in distinguishing IgAN from other primary kidney diseases.
SUBMITTER: Gao J
PROVIDER: S-EPMC3488968 | biostudies-literature |
REPOSITORIES: biostudies-literature