Unknown

Dataset Information

0

Structure and function of non-native metal clusters in human arginase I.


ABSTRACT: Various binuclear metal ion clusters and complexes have been reconstituted in crystalline human arginase I by removing the Mn(2+)(2) cluster of the wild-type enzyme with metal chelators and subsequently soaking the crystalline apoenzyme in buffer solutions containing NiCl(2) or ZnCl(2). X-ray crystal structures of these metal ion variants are correlated with catalytic activity measurements that reveal differences resulting from metal ion substitution. Additionally, treatment of crystalline Mn(2+)(2)-human arginase I with Zn(2+) reveals for the first time the structural basis for inhibition by Zn(2+), which forms a carboxylate-histidine-Zn(2+) triad with H141 and E277. The imidazole side chain of H141 is known to be hyper-reactive, and its chemical modification or mutagenesis is known to similarly compromise catalysis. The reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) binds as a tetrahedral boronate anion to Mn(2+)(2), Co(2+)(2), Ni(2+)(2), and Zn(2+)(2) clusters in human arginase I, and it can be stabilized by a third inhibitory Zn(2+) ion coordinated by H141. Because ABH binds as an analogue of the tetrahedral intermediate and its flanking transition states in catalysis, this implies that the various metallo-substituted enzymes are capable of some level of catalysis with an actual substrate. Accordingly, we establish the following trend for turnover number (k(cat)) and catalytic efficiency (k(cat)/K(M)): Mn(2+) > Ni(2+) ? Co(2+) ? Zn(2+). Therefore, Mn(2+) is required for optimal catalysis by human arginase I.

SUBMITTER: D'Antonio EL 

PROVIDER: S-EPMC3490219 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure and function of non-native metal clusters in human arginase I.

D'Antonio Edward L EL   Hai Yang Y   Christianson David W DW  

Biochemistry 20121012 42


Various binuclear metal ion clusters and complexes have been reconstituted in crystalline human arginase I by removing the Mn(2+)(2) cluster of the wild-type enzyme with metal chelators and subsequently soaking the crystalline apoenzyme in buffer solutions containing NiCl(2) or ZnCl(2). X-ray crystal structures of these metal ion variants are correlated with catalytic activity measurements that reveal differences resulting from metal ion substitution. Additionally, treatment of crystalline Mn(2+  ...[more]

Similar Datasets

| S-EPMC6450656 | biostudies-literature
| S-EPMC2790808 | biostudies-literature
| S-EPMC2018606 | biostudies-literature
| S-EPMC3936225 | biostudies-literature
| S-EPMC6591119 | biostudies-literature
| S-EPMC2998210 | biostudies-literature
| S-EPMC8748809 | biostudies-literature
| S-EPMC3942446 | biostudies-literature
| S-EPMC11304815 | biostudies-literature
| S-EPMC8192935 | biostudies-literature