Unknown

Dataset Information

0

Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation.


ABSTRACT: Basal forebrain cholinergic neurons, which innervate the hippocampus and cortex, have been implicated in many forms of cognitive function. Immunolesion-based methods in animal models have been widely used to study the role of acetylcholine (ACh) neurotransmission in these processes, with variable results. Cholinergic neurons have been shown to release both glutamate and ACh, making it difficult to deduce the specific contribution of each neurotransmitter on cognition when neurons are eliminated. Understanding the precise roles of ACh in learning and memory is critical because drugs that preserve ACh are used as treatment for cognitive deficits. It is therefore important to define which cholinergic-dependent behaviors could be improved pharmacologically. Here we investigate the contributions of forebrain ACh on hippocampal synaptic plasticity and cognitive behavior by selective elimination of the vesicular ACh transporter, which interferes with synaptic storage and release of ACh. We show that elimination of vesicular ACh transporter in the hippocampus results in deficits in long-term potentiation and causes selective deficits in spatial memory. Moreover, decreased cholinergic tone in the forebrain is linked to hyperactivity, without changes in anxiety or depression-related behavior. These data uncover the specific contribution of forebrain cholinergic tone for synaptic plasticity and behavior. Moreover, these experiments define specific cognitive functions that could be targeted by cholinergic replacement therapy.

SUBMITTER: Martyn AC 

PROVIDER: S-EPMC3491511 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation.

Martyn Amanda C AC   De Jaeger Xavier X   Magalhães Ana C AC   Kesarwani Rohit R   Gonçalves Daniela F DF   Raulic Sanda S   Guzman Monica S MS   Jackson Michael F MF   Izquierdo Ivan I   Macdonald John F JF   Prado Marco A M MA   Prado Vania F VF  

Proceedings of the National Academy of Sciences of the United States of America 20121008 43


Basal forebrain cholinergic neurons, which innervate the hippocampus and cortex, have been implicated in many forms of cognitive function. Immunolesion-based methods in animal models have been widely used to study the role of acetylcholine (ACh) neurotransmission in these processes, with variable results. Cholinergic neurons have been shown to release both glutamate and ACh, making it difficult to deduce the specific contribution of each neurotransmitter on cognition when neurons are eliminated.  ...[more]

Similar Datasets

| S-EPMC3210783 | biostudies-literature
| S-EPMC5384838 | biostudies-literature
| S-EPMC2875949 | biostudies-literature
| S-EPMC5075972 | biostudies-literature
| S-EPMC45073 | biostudies-other
| S-EPMC5547197 | biostudies-other
| S-EPMC9291835 | biostudies-literature
| S-EPMC5382984 | biostudies-literature
| S-EPMC5209246 | biostudies-literature
| S-EPMC3804129 | biostudies-literature