Unknown

Dataset Information

0

Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest.


ABSTRACT: The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows progression through mitosis. Recent studies suggest that the APC/C itself participates in SAC silencing by targeting an unknown factor for proteolytic degradation. Key evidence in favour of this model comes from the use of proTAME, a small molecule inhibitor of the APC/C. In cells, proTAME causes a mitotic arrest that is SAC-dependent. Even though this observation comes at odds with the current view that the APC/C acts downstream of the SAC, it was nonetheless argued that these results revealed a role for APC/C activity in SAC silencing. However, we show here that the mitotic arrest induced by proTAME is due to the induction of cohesion fatigue, a phenotype that is caused by the loss of sister chromatid cohesion following a prolonged metaphase. Under these conditions, the SAC is re-activated and APC/C inhibition is maintained independently of proTAME. Therefore, these results provide a simpler explanation for why the proTAME-induced mitotic arrest is also dependent on the SAC. While these observations question the notion that the APC/C is required for SAC silencing, we nevertheless show that APC/C activity does partially contribute to its own release from inhibitory complexes, and importantly, this does not depend on proteasome-mediated degradation.

SUBMITTER: Lara-Gonzalez P 

PROVIDER: S-EPMC3492190 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest.

Lara-Gonzalez Pablo P   Taylor Stephen S SS  

PloS one 20121107 11


The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows progression through mitosis. Recent studies suggest that the APC/C itself participates in SAC silencing by targeting an unknown factor for proteolytic degradation. Key evidence in favour of this mode  ...[more]

Similar Datasets

| S-EPMC6191932 | biostudies-literature
| S-EPMC5938023 | biostudies-literature
| S-EPMC2691139 | biostudies-literature
| S-EPMC1088361 | biostudies-literature
| S-EPMC5018141 | biostudies-literature
| S-EPMC4659839 | biostudies-other
| S-EPMC8028313 | biostudies-literature