Unknown

Dataset Information

0

The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms.


ABSTRACT: The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.

SUBMITTER: Schulze WX 

PROVIDER: S-EPMC3494193 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the prote  ...[more]

Similar Datasets

| S-EPMC11318880 | biostudies-literature
| S-EPMC4732211 | biostudies-literature
| S-EPMC4143254 | biostudies-literature
| S-EPMC4751343 | biostudies-literature
| S-EPMC4791408 | biostudies-literature
| S-EPMC4889972 | biostudies-literature
| S-EPMC4401711 | biostudies-literature
| S-EPMC4902084 | biostudies-literature
| S-EPMC7355038 | biostudies-literature
| S-EPMC7809347 | biostudies-literature