Project description:Many bacteria harbor an incomplete quorum sensing system, wherein they possess LuxR homologues without the quorum sensing acyl-homoserine lactone (AHL) synthase, which is encoded by a luxI homolog. An artificial AHL-producing plasmid was constructed using a cviI gene encoding for C6-AHL (HHL) synthase from Chromobacterium violaceum and was introduced successfully into both wild-type and the ppoR (a luxR homolog) mutant. Our data provides evidence to suggest that the PpoR-HHL complex, but neither PpoR nor HHL alone, could attenuate growth, antibiotic resistance, and biofilm formation ability. In contrast, swimming motility, siderophore production, and indole degradation were enhanced by PpoR-HHL. The addition of exogenous indole increased biofilm formation and reduce swimming motility. Interestingly, indole proved ineffective in the presence of PpoR-HHL, thereby suggesting that the PpoR-HHL complex masks the effects of indole. Our data was supported by transcriptome analyses showing that the presence of the plasmid-encoded AHL synthase altered the expression of many genes on the chromosome in strain KT2440. Our results showed that heterologous luxI expression occurring via horizontal gene transfer can regulate a broad range of specific target genes, resulting in alterations of the phenotype and physiology of host cells.
Project description:Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered public goods shared by individuals within a group. Quorum-sensing control of antibiotic production may be important for protecting a niche or competing for limited resources in mixed bacterial communities. To begin to investigate the role of quorum sensing in interspecies competition, we developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis (Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the production of antimicrobial factors that inhibit growth of the other species. We demonstrate that quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage in certain situations. We use an in silico approach to investigate the effect of eavesdropping in competition, and show conditions where early activation of antibiotic production resulting from eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is important for interspecies competition and that promiscuous signal receptors allow eavesdropping on competitors in mixed microbial habitats.
Project description:The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme.
Project description:Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments.
Project description:Enzymes able to degrade or modify acyl-homoserine lactones (AHLs) have drawn considerable interest for their ability to interfere with the bacterial communication process referred to as quorum sensing. Many proteobacteria use AHL to coordinate virulence and biofilm formation in a cell density-dependent manner; thus, AHL-interfering enzymes constitute new promising antimicrobial candidates. Among these, lactonases and acylases have been particularly studied. These enzymes have been isolated from various bacterial, archaeal, or eukaryotic organisms and have been evaluated for their ability to control several pathogens. Engineering studies on these enzymes were carried out and successfully modulated their capacity to interact with specific AHL, increase their catalytic activity and stability, or enhance their biotechnological potential. In this review, special attention is paid to the screening, engineering, and applications of AHL-modifying enzymes. Prospects and future opportunities are also discussed with a view to developing potent candidates for bacterial control.
Project description:N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Project description:Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family.
Project description:Acyl homoserine lactone (AHL)-based quorum sensing commonly refers to cell density-dependent regulatory mechanisms found in bacteria. However, beyond bacteria, this cell-to-cell communication mechanism is poorly understood. Here we show that a methanogenic archaeon, Methanosaeta harundinacea 6Ac, encodes an active quorum sensing system that is used to regulate cell assembly and carbon metabolic flux. The methanogen 6Ac showed a cell density-dependent physiology transition, which was related to the AHL present in the spent culture and the filI gene-encoded AHL synthase. Through extensive chemical analyses, a new class of carboxylated AHLs synthesized by FilI protein was identified. These carboxylated AHLs facilitated the transition from a short cell to filamentous growth, with an altered carbon metabolic flux that favoured the conversion of acetate to methane and a reduced yield in cellular biomass. The transcriptomes of the filaments and the short cell forms differed with gene expression profiles consistent with the physiology. In the filaments, genes encoding the initial enzymes in the methanogenesis pathway were upregulated, whereas those for cellular carbon assimilation were downregulated. A luxI-luxR ortholog filI-filR was present in the genome of strain 6Ac. The carboxylated AHLs were also detected in other methanogen cultures and putative filI orthologs were identified in other methanogenic genomes as well. This discovery of AHL-based quorum sensing systems in methanogenic archaea implies that quorum sensing mechanisms are universal among prokaryotes.
Project description:It is crucial to reveal the regulatory mechanism of nitrification to understand nitrogen conversion in agricultural systems and wastewater treatment. In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine lactone signals with 7 to 11 carbon acyl groups. A novel signal, 7, 8-trans-N-(decanoyl) homoserine lactone (C10:1-HSL), was identified in both N. winogradskyi and the recombined E. coli. Furthermore, this novel signal also triggered variances in the nitrification rate and the level of transcripts for the genes involved in the nitrification process. These results indicate that quorum sensing may have a potential role in regulating nitrogen metabolism.
Project description:Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.