Unknown

Dataset Information

0

Simple few-state models reveal hidden complexity in protein folding.


ABSTRACT: Markov state models constructed from molecular dynamics simulations have recently shown success at modeling protein folding kinetics. Here we introduce two methods, flux PCCA+ (FPCCA+) and sliding constraint rate estimation (SCRE), that allow accurate rate models from protein folding simulations. We apply these techniques to fourteen massive simulation datasets generated by Anton and Folding@home. Our protocol quantitatively identifies the suitability of describing each system using two-state kinetics and predicts experimentally detectable deviations from two-state behavior. An analysis of the villin headpiece and FiP35 WW domain detects multiple native substates that are consistent with experimental data. Applying the same protocol to GTT, NTL9, and protein G suggests that some beta containing proteins can form long-lived native-like states with small register shifts. Even the simplest protein systems show folding and functional dynamics involving three or more states.

SUBMITTER: Beauchamp KA 

PROVIDER: S-EPMC3497769 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Simple few-state models reveal hidden complexity in protein folding.

Beauchamp Kyle A KA   McGibbon Robert R   Lin Yu-Shan YS   Pande Vijay S VS  

Proceedings of the National Academy of Sciences of the United States of America 20120709 44


Markov state models constructed from molecular dynamics simulations have recently shown success at modeling protein folding kinetics. Here we introduce two methods, flux PCCA+ (FPCCA+) and sliding constraint rate estimation (SCRE), that allow accurate rate models from protein folding simulations. We apply these techniques to fourteen massive simulation datasets generated by Anton and Folding@home. Our protocol quantitatively identifies the suitability of describing each system using two-state ki  ...[more]

Similar Datasets

| S-EPMC522040 | biostudies-literature
| S-EPMC5374633 | biostudies-literature
| S-EPMC5823527 | biostudies-literature
| S-EPMC4850345 | biostudies-other
| S-EPMC7512302 | biostudies-literature
| S-EPMC5022777 | biostudies-literature
| S-EPMC5116026 | biostudies-literature
| S-EPMC4648221 | biostudies-literature
| S-EPMC7702077 | biostudies-literature
| S-EPMC3677858 | biostudies-literature