Unknown

Dataset Information

0

Photoinduced disaggregation of TiO? nanoparticles enables transdermal penetration.


ABSTRACT: Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO(2) aggregates is reduced from ?280 nm to ?230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg(-1) of TiO(2) for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg(-1) for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications.

SUBMITTER: Bennett SW 

PROVIDER: S-EPMC3498245 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Photoinduced disaggregation of TiO₂ nanoparticles enables transdermal penetration.

Bennett Samuel W SW   Zhou Dongxu D   Mielke Randall R   Keller Arturo A AA  

PloS one 20121114 11


Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregatio  ...[more]

Similar Datasets

| S-EPMC6138933 | biostudies-literature
| S-EPMC3294199 | biostudies-literature
| S-EPMC8554764 | biostudies-literature
| S-EPMC3952901 | biostudies-other
| S-EPMC555729 | biostudies-literature
| S-EPMC10057149 | biostudies-literature
| S-EPMC4444962 | biostudies-literature
| S-EPMC6644424 | biostudies-literature
| S-EPMC5297826 | biostudies-literature
| S-EPMC7596160 | biostudies-literature