Unknown

Dataset Information

0

Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.


ABSTRACT: MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(?) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.

SUBMITTER: Williams PH 

PROVIDER: S-EPMC3503367 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.

Williams Philip H PH   Eyles Rod R   Weiller Georg G  

Journal of nucleic acids 20121107


MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use  ...[more]

Similar Datasets

| S-EPMC2889937 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC6864072 | biostudies-literature
| S-EPMC4223108 | biostudies-literature
| S-EPMC9880585 | biostudies-literature
2013-01-01 | GSE29210 | GEO
| S-EPMC6732211 | biostudies-literature
| S-EPMC7731568 | biostudies-literature
| S-EPMC7703937 | biostudies-literature
| S-EPMC8759172 | biostudies-literature