Unknown

Dataset Information

0

HiCNorm: removing biases in Hi-C data via Poisson regression.


ABSTRACT:

Summary

We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility.

Availability

Freely available on the web at: http://www.people.fas.harvard.edu/?junliu/HiCNorm/.

Contact

jliu@stat.harvard.edu

Supplementary information

Supplementary data are available at Bioinformatics online.

SUBMITTER: Hu M 

PROVIDER: S-EPMC3509491 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

HiCNorm: removing biases in Hi-C data via Poisson regression.

Hu Ming M   Deng Ke K   Selvaraj Siddarth S   Qin Zhaohui Z   Ren Bing B   Liu Jun S JS  

Bioinformatics (Oxford, England) 20120927 23


<h4>Summary</h4>We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility.<h4>Availability</h4>Freely available on the web at: http://www.people.fas.harvard.edu/∼junliu/HiCNorm/.<h4>Contact</h4>jliu@stat.harvard.edu<h4>S  ...[more]

Similar Datasets

| S-EPMC3288408 | biostudies-literature
| S-EPMC7757242 | biostudies-literature
| S-EPMC5965849 | biostudies-literature
| S-EPMC10081874 | biostudies-literature
| S-EPMC5860379 | biostudies-literature
| S-EPMC11074651 | biostudies-literature
| S-EPMC9272800 | biostudies-literature
| S-EPMC6161884 | biostudies-literature
| S-EPMC5381888 | biostudies-literature
| S-EPMC6926877 | biostudies-literature