Unknown

Dataset Information

0

Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.


ABSTRACT: Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4) belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i) are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine), ii) display overlapping regulatory activities, iii) govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv) are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

SUBMITTER: Bastiat B 

PROVIDER: S-EPMC3511301 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

Bastiat Bénédicte B   Sauviac Laurent L   Picheraux Carole C   Rossignol Michel M   Bruand Claude C  

PloS one 20121130 11


Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: t  ...[more]

Similar Datasets

2018-09-05 | GSE116665 | GEO
2012-10-02 | GSE36186 | GEO
| S-EPMC6180224 | biostudies-literature
| S-EPMC4581636 | biostudies-literature
2018-09-05 | GSE116680 | GEO
| S-EPMC5745026 | biostudies-literature
2012-10-02 | E-GEOD-36186 | biostudies-arrayexpress
| S-EPMC2976971 | biostudies-literature
| S-EPMC1482976 | biostudies-literature
| S-EPMC2849433 | biostudies-literature