Unknown

Dataset Information

0

Genetic variation in Saccharomyces cerevisiae: circuit diversification in a signal transduction network.


ABSTRACT: The connection between genotype and phenotype was assessed by determining the adhesion phenotype for the same mutation in two closely related yeast strains, S288c and Sigma, using two identical deletion libraries. Previous studies, all in Sigma, had shown that the adhesion phenotype was controlled by the filamentation mitogen-activated kinase (fMAPK) pathway, which activates a set of transcription factors required for the transcription of the structural gene FLO11. Unexpectedly, the fMAPK pathway is not required for FLO11 transcription in S288c despite the fact that the fMAPK genes are present and active in other pathways. Using transformation and a sensitized reporter, it was possible to isolate RPI1, one of the modifiers that permits the bypass of the fMAPK pathway in S288c. RPI1 encodes a transcription factor with allelic differences between the two strains: The RPI1 allele from S288c but not the one from Sigma can confer fMAPK pathway-independent transcription of FLO11. Biochemical analysis reveals differences in phosphorylation between the alleles. At the nucleotide level the two alleles differ in the number of tandem repeats in the ORF. A comparison of genomes between the two strains shows that many genes differ in size due to variation in repeat length.

SUBMITTER: Chin BL 

PROVIDER: S-EPMC3512157 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic variation in Saccharomyces cerevisiae: circuit diversification in a signal transduction network.

Chin Brian L BL   Ryan Owen O   Lewitter Fran F   Boone Charles C   Fink Gerald R GR  

Genetics 20121010 4


The connection between genotype and phenotype was assessed by determining the adhesion phenotype for the same mutation in two closely related yeast strains, S288c and Sigma, using two identical deletion libraries. Previous studies, all in Sigma, had shown that the adhesion phenotype was controlled by the filamentation mitogen-activated kinase (fMAPK) pathway, which activates a set of transcription factors required for the transcription of the structural gene FLO11. Unexpectedly, the fMAPK pathwa  ...[more]

Similar Datasets

| S-EPMC329515 | biostudies-literature
| S-EPMC2786032 | biostudies-literature
| S-EPMC2577700 | biostudies-literature
| S-EPMC6150731 | biostudies-literature
| S-EPMC539023 | biostudies-literature
| S-EPMC1360249 | biostudies-literature
| S-EPMC2975643 | biostudies-literature
| S-EPMC4174948 | biostudies-literature
| S-EPMC395785 | biostudies-literature
| S-EPMC6530872 | biostudies-literature