Unknown

Dataset Information

0

Adipose tissue dysfunction in humans: a potential role for the transmembrane protein ENPP1.


ABSTRACT:

Context

Adipose tissue (AT) helps to regulate body fat partitioning and systemic lipid/glucose metabolism. We have recently reported lipid/glucose metabolism abnormalities and increased liver triglyceride content in an AT-selective transgenic model overexpressing ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), the AdiposeENPP1-Tg mouse.

Objective

The aim of the study was to test the translational hypothesis that AT-ENPP1 overexpression associates with AT dysfunction (changes in AT gene expression, plasma fatty acid, and adipokine levels), increased liver triglyceride deposition, and systemic insulin resistance in humans.

Design/setting/participants

A total of 134 young normoglycemic men and women were subjected to body composition studies, hyperinsulinemic-euglycemic clamps, and AT needle biopsy. Twenty men also had liver/muscle nuclear magnetic resonance spectroscopy.

Main outcome measures

Predetermined measures included AT expression of ENPP1 and other lipid metabolism/inflammation genes, plasma adipokines, and nonesterified fatty acid (NEFA) levels, liver/muscle triglyceride content, and the systemic glucose disposal rate.

Results

After statistical adjustment for body fat content, increasing AT-ENPP1 was associated with up-regulation of genes involved in NEFA metabolism and inflammation, increased postabsorptive NEFA levels, decreased plasma adiponectin, increased liver triglyceride content, and systemic insulin resistance in men. In women, there were no changes in plasma adiponectin, NEFAs, or glucose disposal rate associated with increasing AT-ENPP1, despite increased expression of lipid metabolism and inflammation genes in AT.

Conclusions

Increased AT-ENPP1 is associated with AT dysfunction, increased liver triglyceride deposition, and systemic insulin resistance in young normoglycemic men. These findings are concordant with the AdiposeENPP1-Tg phenotype and identify a potential target of therapy for health complications of AT dysfunction, including type 2 diabetes and cardiovascular disease.

SUBMITTER: Chandalia M 

PROVIDER: S-EPMC3513530 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adipose tissue dysfunction in humans: a potential role for the transmembrane protein ENPP1.

Chandalia Manisha M   Davila Himara H   Pan Wentong W   Szuszkiewicz Magdalena M   Tuvdendorj Demidmaa D   Livingston Edward H EH   Abate Nicola N  

The Journal of clinical endocrinology and metabolism 20120925 12


<h4>Context</h4>Adipose tissue (AT) helps to regulate body fat partitioning and systemic lipid/glucose metabolism. We have recently reported lipid/glucose metabolism abnormalities and increased liver triglyceride content in an AT-selective transgenic model overexpressing ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), the AdiposeENPP1-Tg mouse.<h4>Objective</h4>The aim of the study was to test the translational hypothesis that AT-ENPP1 overexpression associates with AT dysfunction (c  ...[more]

Similar Datasets

| S-EPMC3275110 | biostudies-literature
| S-EPMC5484536 | biostudies-literature
| S-EPMC6618070 | biostudies-literature
| S-EPMC5289462 | biostudies-literature
| S-EPMC4076823 | biostudies-literature
| S-EPMC8655049 | biostudies-literature
| S-EPMC3326476 | biostudies-literature
| S-EPMC4940190 | biostudies-literature
| S-EPMC4207391 | biostudies-literature