Abstract rule learning: the differential effects of lesions in frontal cortex.
Ontology highlight
ABSTRACT: Learning progressively more abstract stimulus-response mappings requires progressively more anterior regions of the lateral frontal cortex. Using an individual differences approach, we studied subjects with frontal lesions performing a hierarchical reinforcement-learning task to investigate how frontal cortex contributes to abstract rule learning. We predicted that subjects with lesions of the left pre-premotor (pre-PMd) cortex, a region implicated in abstract rule learning, would demonstrate impaired acquisition of second-order, as opposed to first-order, rules. We found that 4 subjects with such lesions did indeed demonstrate a second-order rule-learning impairment, but that these subjects nonetheless performed better than subjects with other frontal lesions in a second-order rule condition. This finding resulted from both their restricted exploration of the feature space and the task structure of this condition, for which they identified partially representative first-order rules. Significantly, across all subjects, suboptimal but above-chance performance in this condition correlated with increasing disconnection of left pre-PMd from the putative functional hierarchy, defined by reduced functional connectivity between left pre-PMd and adjacent nodes. These findings support the theory that activity within lateral frontal cortex shapes the search for relevant stimulus-response mappings, while emphasizing that the behavioral correlate of impairments depends critically on task structure.
SUBMITTER: Kayser AS
PROVIDER: S-EPMC3513961 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA