Unknown

Dataset Information

0

Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task.


ABSTRACT: In dynamic environments, adaptive behavior requires striking a balance between harvesting currently available rewards (exploitation) and gathering information about alternative options (exploration). Such strategic decisions should incorporate not only recent reward history, but also opportunity costs and environmental statistics. Previous neuroimaging and neurophysiological studies have implicated orbitofrontal cortex, anterior cingulate cortex, and ventral striatum in distinguishing between bouts of exploration and exploitation. Nonetheless, the neuronal mechanisms that underlie strategy selection remain poorly understood. We hypothesized that posterior cingulate cortex (CGp), an area linking reward processing, attention, memory, and motor control systems, mediates the integration of variables such as reward, uncertainty, and target location that underlie this dynamic balance. Here we show that CGp neurons distinguish between exploratory and exploitative decisions made by monkeys in a dynamic foraging task. Moreover, firing rates of these neurons predict in graded fashion the strategy most likely to be selected on upcoming trials. This encoding is distinct from switching between targets and is independent of the absolute magnitudes of rewards. These observations implicate CGp in the integration of individual outcomes across decision making and the modification of strategy in dynamic environments.

SUBMITTER: Pearson JM 

PROVIDER: S-EPMC3515083 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task.

Pearson John M JM   Hayden Benjamin Y BY   Raghavachari Sridhar S   Platt Michael L ML  

Current biology : CB 20090903 18


In dynamic environments, adaptive behavior requires striking a balance between harvesting currently available rewards (exploitation) and gathering information about alternative options (exploration). Such strategic decisions should incorporate not only recent reward history, but also opportunity costs and environmental statistics. Previous neuroimaging and neurophysiological studies have implicated orbitofrontal cortex, anterior cingulate cortex, and ventral striatum in distinguishing between bo  ...[more]

Similar Datasets

| S-EPMC5788808 | biostudies-literature
| S-EPMC2955129 | biostudies-literature
| S-EPMC3892695 | biostudies-literature
| S-EPMC4170682 | biostudies-literature
| S-EPMC9451146 | biostudies-literature
| S-EPMC7770227 | biostudies-literature
| S-EPMC10041987 | biostudies-literature
| S-EPMC9352796 | biostudies-literature
| S-EPMC9344055 | biostudies-literature
| S-EPMC2575690 | biostudies-literature