Unknown

Dataset Information

0

Selection-driven extinction dynamics for group II introns in Enterobacteriales.


ABSTRACT: Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.

SUBMITTER: Leclercq S 

PROVIDER: S-EPMC3522654 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selection-driven extinction dynamics for group II introns in Enterobacteriales.

Leclercq Sébastien S   Cordaux Richard R  

PloS one 20121214 12


Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized  ...[more]

Similar Datasets

| S-EPMC5678935 | biostudies-literature
| S-EPMC165496 | biostudies-literature
| S-EPMC5659887 | biostudies-literature
| S-EPMC1196009 | biostudies-literature
| S-EPMC2840290 | biostudies-literature
| S-EPMC1370344 | biostudies-other
| S-EPMC2882425 | biostudies-literature
| S-EPMC2394887 | biostudies-literature
| S-EPMC4676843 | biostudies-literature
| S-EPMC6239893 | biostudies-literature