A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays.
Ontology highlight
ABSTRACT: Given the complexity of cell membranes, there is a need for an analytical technique which can explore the physical properties of lipid membranes in a high-throughput and noninvasive manner. A simplified sum-frequency vibrational imaging (SFVI) setup has been developed and characterized using asymmetrically prepared 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):1,2-distearoyl(d70)-sn-glycero-3-phosphocholine (DSPC-d(70)) lipid bilayer arrays. Exploiting the vibrational selectivity and inherent symmetry constraints of sum-frequency generation, SFVI was successfully used to probe the transition temperature of a patterned DSPC:DSPC-d(70) lipid bilayer array. SFVI was also used to study the phase behavior in a multicomponent micropatterned lipid bilayer array (MLBA) prepared using three different binary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DSPC, DOPC:1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC:DSPC). This paper demonstrates that a simplified SFVI setup provides the necessary chemical imaging capabilities with the spatial resolution, sensitivity, and field of view required for exploring lipid membrane properties in a high-throughput array based assay.
SUBMITTER: Smith KA
PROVIDER: S-EPMC3523694 | biostudies-literature | 2012 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA