Ontology highlight
ABSTRACT: Background
G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs in the rat GI tract divided into twelve subsegments.Methods
Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum.Results
We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments) or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members, hinting at more specific/localized roles for some of these receptors.Conclusions
Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and defines them as a potentially crucial target for pharmacological interventions.
SUBMITTER: Badiali L
PROVIDER: S-EPMC3526421 | biostudies-literature | 2012 Sep
REPOSITORIES: biostudies-literature
Badiali Luca L Cedernaes Jonathan J Olszewski Pawel K PK Nylander Olof O Vergoni Anna V AV Schiöth Helgi B HB
BMC gastroenterology 20120925
<h4>Background</h4>G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensiv ...[more]