Ontology highlight
ABSTRACT: Background
The 23-amino acid extracellular domain of matrix 2 protein (M2e) and the internal nucleoprotein (NP) of influenza are highly conserved among viruses and thus are promising candidate antigens for the development of a universal influenza vaccine. Various M2e- or NP-based DNA or viral vector vaccines have been shown to have high immunogenicity; however, high cost, complicated immunization procedures, and vector-specific antibody responses have restricted their applications. Immunization with an NP-M2e fusion protein expressed in Escherichia coli may represent an alternative strategy for the development of a universal influenza vaccine.Methodology/principal findings
cDNA encoding M2e was fused to the 3' end of NP cDNA from influenza virus A/Beijing/30/95 (H3N2). The fusion protein (NM2e) was expressed in E. coli and isolated with 90% purity. Mice were immunized with recombinant NM2e protein along with aluminum hydroxide gel and/or CpG as adjuvant. NM2e plus aluminum hydroxide gel almost completely protected the mice against a lethal (20 LD(50)) challenge of heterologous influenza virus A/PR/8/34.Conclusions/significance
The NM2e fusion protein expressed in E. coli was highly immunogenic in mice. Immunization with NM2e formulated with aluminum hydroxide gel protected mice against a lethal dose of a heterologous influenza virus. Vaccination with recombinant NM2e fusion protein is a promising strategy for the development of a universal influenza vaccine.
SUBMITTER: Wang W
PROVIDER: S-EPMC3528677 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
Wang Wenling W Huang Baoying B Jiang Tao T Wang Xiuping X Qi Xiangrong X Gao Yingying Y Tan Wenjie W Ruan Li L
PloS one 20121221 12
<h4>Background</h4>The 23-amino acid extracellular domain of matrix 2 protein (M2e) and the internal nucleoprotein (NP) of influenza are highly conserved among viruses and thus are promising candidate antigens for the development of a universal influenza vaccine. Various M2e- or NP-based DNA or viral vector vaccines have been shown to have high immunogenicity; however, high cost, complicated immunization procedures, and vector-specific antibody responses have restricted their applications. Immun ...[more]