Unknown

Dataset Information

0

Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells.


ABSTRACT:

Unlabelled

Background

Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport.

Results

We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D?~?1.3 ?m2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent ??~?0.63 and an anomalous diffusion constant of D??=?1.95 x 10-3 ?m2/s?. On a longer time scale (t?>?~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v?~?6 x 10-3 ?m/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%.

Conclusions

The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport.

SUBMITTER: Lund FW 

PROVIDER: S-EPMC3532368 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells.

Lund Frederik W FW   Lomholt Michael A MA   Solanko Lukasz M LM   Bittman Robert R   Wüstner Daniel D  

BMC biophysics 20121018


<h4>Unlabelled</h4><h4>Background</h4>Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-traffickin  ...[more]

Similar Datasets

| S-EPMC2789779 | biostudies-literature
| S-EPMC3824416 | biostudies-literature
| S-EPMC7009023 | biostudies-literature
| S-EPMC3772721 | biostudies-literature
| S-EPMC4988379 | biostudies-literature
| S-EPMC3103581 | biostudies-literature
| S-EPMC6440468 | biostudies-literature
| S-EPMC4166320 | biostudies-literature
| S-EPMC3948301 | biostudies-literature
| S-EPMC6286315 | biostudies-literature